Reference
- Bezanson, J., Edelman, A., Karpinski, S., & Shah, V. B. (2017). Julia: A fresh approach to numerical computing. SIAM review, 59(1), 65-98.
- Chapman, S., Cowling, T. G., & Burnett, D. (1990). The mathematical theory of non-uniform gases: an account of the kinetic theory of viscosity, thermal conduction and diffusion in gases. Cambridge University Press.
- Landau, L.D., & Lifshitz E. M. (1959). Fluid mechanics, London: Pergamon Press.
- Blazek, J. (2015). Computational fluid dynamics: principles and applications. Butterworth-Heinemann.
- Xu, K., & Huang, J. C. (2010). A unified gas-kinetic scheme for continuum and rarefied flows. Journal of Computational Physics, 229(20), 7747-7764.
- Bird, G. A. (1994). Molecular gas dynamics and the direct simulation of gas flows. Molecular gas dynamics and the direct simulation of gas flows.
- Xiao, T., Cai, Q., & Xu, K. (2017). A well-balanced unified gas-kinetic scheme for multiscale flow transport under gravitational field. Journal of Computational Physics, 332, 475-491.
- Xiao, T., Xu, K., & Cai, Q. (2019). A unified gas-kinetic scheme for multiscale and multicomponent flow transport. Applied Mathematics and Mechanics, 40(3), 355-372.
- Xiao, T., Liu, C., Xu, K., & Cai, Q. (2020). A velocity-space adaptive unified gas kinetic scheme for continuum and rarefied flows. Journal of Computational Physics, 415, 109535.
- Xiao, T., & Frank, M. (2020). Using neural networks to accelerate the solution of the Boltzmann equation. arXiv:2010.13649.
- Amos, B., Xu, L., & Kolter, J. Z. (2017, July). Input convex neural networks. In International Conference on Machine Learning (pp. 146-155). PMLR.