
Structure Preserving Neural Networks: A Case Study in the Entropy Closure of
the Boltzmann Equation

Steffen Schotthöfer 1 Tianbai Xiao 1 Martin Frank 1 Cory D. Hauck 2 3

Abstract

In this paper, we explore applications of deep
learning in statistical physics. We choose the
Boltzmann equation as a typical example, where
neural networks serve as a closure to its moment
system. We present two types of neural networks
to embed the convexity of entropy and to preserve
the minimum entropy principle and intrinsic math-
ematical structures of the moment system of the
Boltzmann equation. We derive an error bound
for the generalization gap of convex neural net-
works which are trained in Sobolev norm and use
the results to construct data sampling methods for
neural network training. Numerical experiments
demonstrate that the neural entropy closure is sig-
nificantly faster than classical optimizers while
maintaining sufficient accuracy.

1. Introduction
The Boltzmann equation laid the foundation for statistical
physics, and describes the evolution of one-particle probabil-
ity density function f(t, x, v), where {x ∈ R3, v ∈ R3} are
the coordinates in phase space, in a many-particle system

∂tf + v · ∇xf = Q(f). (1)

The linear collision operator Q(f) describes interactions
between particles and with the background medium. The
high dimensionality and nonlinearity brings tremendous
challenge for large scale numerical solutions.
Moment methods eliminate the dependency of the phase
space on the velocity variable by computing the moment

1Department of Applied and Numerical Mathematics, Karl-
sruhe Institute of Technology, Karlsruhe, Germany 2Computer Sci-
ence and Mathematics Division,Oak Ridge National Laboratory,
Oak Ridge, TN, USA 3Department of Mathematics (Joint Faculty),
University of Tennessee, Knoxville, TN, USA. Correspondence to:
Steffen Schotthöfer <steffen.schotthoefer@kit.edu>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

hierarchy of the Boltzmann equation

∂tu+∇x · ⟨vmf⟩ = ⟨mQ(f)⟩ , (2)

where u(t, x) is the moment vector and m(v) is a vector of
velocity dependent basis functions. The bracket operator ⟨·⟩
denotes the integral over the velocity space

∫
V
·dv.

The moment system (2) usually requires a closure due to
the existence of high-order unclosed terms in the advection
operator. The so called MN moment closure preserves en-
tropy dissipation, hyperbolicity, positivity of the solution,
conservation of mass and Boltzmann’s H-Theorem, which
are important for the stability and physical accuracy of nu-
merical solvers. The MN closure is constructed by solving
a convex constrained optimization problem based on the
entropy minimization principle (Levermore, 1997),

h(u) = min
g∈Fm

⟨η(g)⟩ s.t. u = ⟨mg⟩ . (3)

The minimizer fu of Eq. (3) closes the moment system (2).
The minimal entropy closure gives a nonlinear reconstruc-
tion of f differs form Grad-type moment closures, that re-
construct f as a linear combination of the basis m. The set
of all moments u for which the above problem is solvable
is is called the realizable set R and h is the minimal en-
tropy corresponding to the moment u. The entropy density
is denoted by η : R+ → R. Although the MN closure is
methodically superior simple truncation closures, it is by
far more expensive to compute. The authors of (Garrett &
Hauck, 2013) have demonstrated, that in a high performance
implementation, more than 80% of the computational time
of the whole simulation is required for the solution of the
entropy minimization problem, since the optimization prob-
lem needs to be solved in each grid cell at each time step of
the simulation. This motivates the development of a neural
network surrogate model to accelerate the MN closure.

1.1. Previous Work

In (Alldredge et al., 2019), the authors have shown, that any
convex approximation to the minimal entropy functional
preserves the intrinsic structure of the Boltzmann moment
system. Previously, convex splines and feed forward neural
networks have been used in (Porteous et al., 2021) to build a
data driven surrogate model for the minimal entropy closure.

Structure preserving neural networks: A case study in the entropy closure of the Boltzmann equation

Recently, much effort has been put into finding deep learn-
ing based moment closures for Grad type moment systems
of the Boltzmann equation. In (Han et al., 2019; E et al.,
2020a), the authors pursue two strategies. First, they use a
encoder-decoder network to learn the generalized moments
the moment system and then learn its closure by reconstruc-
tion of the kinetic density f . Second, they learn directly
the reduced model for the set of generalized moments. The
authors of (Li et al., 2021) directly model the kinetic density
f to close the moment system using an U-Net that consid-
ers global information of the solution field. The authors
of (Huang et al., 2021) close the moment system by learning
the spatial gradient of the highest order moment.

1.2. Contributions

This work explores the capacity of deep neural networks in
the application of the Boltzmann equation and its implica-
tions on numerical differential equation solvers. We provide
two new deep neural network based structure preserving
minimal entropy closures for the moment system of the
Boltzmann equation. The first approach uses an input con-
vex neural network inspired by the architecture of (Amos
et al., 2017) and learns the convex moment to entropy map.
By this ansatz, the learned closure automatically inherits all
structural properties of the entropy closure for the moment
system. The derivative of the network with respect to the
moments maps to the corresponding optimal Lagrange mul-
tipliers of the entropy minimization problem. The network
is trained on the predicted entropy, the derived Lagrange
multipliers and the reconstructed moments.
The second approach of in this work is a monotonic neural
network that maps the moments directly to the Lagrange
multipliers of the entropy minimization problem. We use
a penalty function to train the neural network to be mono-
tonic and otherwise use the same loss as in the input convex
approach.
Furthermore, we construct an error bound of the generaliza-
tion gap of input convex neural networks trained in Sobolev
norm. Additionally, we provide insights in the topology of
the realizable set R, the data-to-solution map of the minimal
entropy closure and its implications on the consruction of
data driven closures.
We combine the above insights to propose a data sampling
strategy for the neural network based minimal entropy clo-
suers. Finally, we demonstrate our findings in numerical
simulation test cases, where we compare accuracy and com-
putational efficiency of the closures to a traditional numeri-
cal solver that provides a benchmark.

2. Moment methods for kinetic equations
The Boltzmann equation is an integro-differential equation
model defined on a seven-dimensional phase space. With

the nonlinear five-fold integral, it is challenging to solve
accurately and efficiently. The well-known moment method
encode the velocity dependence of the Boltzmann equation
by multiplication with a vector of velocity dependent basis
functions m(v), that consists of polynomials up to order
N and subsequent integration over v. The solution of the
resulting moment equation is the moment vector

u(t,x) = ⟨m(v)f(t, x,v)⟩ . (4)

The moment vector satisfies the system of transport equa-
tions (5) which is called moment system. By construction,
the advection operator depends on f and thus, the moment
system is unclosed. Moment methods aim to find a mean-
ingful closure for this system. Since the kinetic equation
dissipates entropy and fulfills a local entropy dissipation
law, one can close the system by choosing the reconstructed
kinetic density fu out of the set of all possible functions
Fm = {g(v) > 0 : ⟨mg⟩ < ∞}, that fulfill u(t, x) = ⟨mg⟩
as the one with minimal entropy h and is formulated in
Eq. (3). The minimal value of the objective function is de-
noted by h(u) = ⟨η(fu)⟩ and fu is the minimizer of Eq. (3),
which we use to close the moment system

∂tu+∇x · ⟨vm(v)fu⟩ = ⟨m(v)Q(fu)⟩ . (5)

The set of all moments corresponding to kinetic densities
f > 0 is called the realizable set

R = {u : ⟨mg⟩ = u, g ∈ Fm} . (6)

There does not always exists a solution for the minimal
entropy problem (Hauck et al., 2008). However, a solution
can only exist for u ∈ R and if it exists, it is unique and of
the form

fu = η′∗(αu ·m). (7)

where the Lagrange multiplier αu : RÑ → RÑ maps u to
the solution of the convex dual problem

αu = argmax
α∈RÑ

{α · u− ⟨η∗(α ·m)⟩} (8)

and η∗ is the Legendre dual of η. By the strong duality of
the minimal entropy problem, the maximum of (8) equals
the minimum of (3) and we can write at the optimal point
(u, αu)

h(u) = αu · u− ⟨η∗(αu ·m)⟩ . (9)

The twice differentiable and convex function h(u) serves as
the entropy of the moment system (Alldredge et al., 2019).
We can recover the moment u by using first order optimality
conditions

d

dαu
h = u− ⟨mη′∗(αu ·m)⟩ = 0 (10)

Structure preserving neural networks: A case study in the entropy closure of the Boltzmann equation

which yields also Eq. (7), since

u = ⟨mfu⟩ = ⟨mη′∗(αu ·m)⟩ . (11)

This yields the inverse of the solution map αu of the dual
optimization problem. Furthermore, the derivative of h
recovers the optimal Lagrange multipliers of Eq. (8),

d

du
h = αu. (12)

A traditional numerical method to solve the moment sys-
tem therefore consists of an iterative discretization scheme
for the moment system (5) and a Newton optimizer for
the dual minimal entropy optimization problem in Eq. (8).
The drawback of the method is the high computational cost
associated with the Newton solver. The optimization prob-
lem in Eq. (8) needs to be solved in each grid cell at every
time step of the kinetic solver. The computational effort
to solve the minimal entropy optimization problem grows
over proportionately with the order N of the moment basis
m(v). Using three basis functions, the optimizer requires
80% of the computation time and 87% when using seven
basis functions (Kristopher Garrett et al., 2015).

3. Structure-preserving entropy closures using
neural networks

The following section tackles the challenge of solving the
minimal entropy closure computationally efficiently while
preserving the key structural properties of the Boltzmann
equation. We propose two neural network architectures,
which map a given moment vector to the solution of the
minimal entropy problem, replacing the costly Newton
solver that is used in traditional numerical methods.
Whereas a Newton solver requires the inversion of a near
singular Hessian matrix multiple times, the usage of a
neural network needs a comparatively small amount of fast
tensor operations to compute the closure.

3.1. Data structure and dimension reduction

The structure of the underlying data is crucial for the con-
struction of meaningful machine learning models. We state
useful facts about the realizable set R and the moment to
entropy map, which are used to construct the neural net-
work architectures. For detailed explanations, we refer to
Appendix B.
The realizable set R is in general a convex cone, which is
bounded and convex for a fixed moment of order zero u0.
Thus we define the normalized realizable set Rn and the
reduced normalized realizable set Rr as

Rn = {u ∈ R : u0 = 1} ⊂ RÑ , (13)

Rr =
{
ur ∈ RN : [1, urT]T ∈ Rn

}
⊂ RÑ−1. (14)

We denote normalized moments and reduced normalized
moments as

un =
u

u0
= [1, ur

1, . . . , u
r
N]T ∈ RÑ , (15)

ur = [ur
1, . . . , u

r
N]T ∈ RÑ−1. (16)

We establish some relations between the Lagrange multiplier
αu, the Lagrange multiplier of the normalized moment αn

u

and of the reduced normalized moment αr
u,

αn
u =

[
αr
u,0, α

r
u,1, . . . , α

r
u,N

]T ∈ RÑ , (17)

αr
u =

[
αr
u,1, . . . , α

r
u,N

]T ∈ RÑ−1. (18)

The Lagrange multiplier of order zero αr
u,0 can be computed

with

αr
u,0 = − ln(⟨exp(αr

u ·mr)⟩), (19)

and Lagrange multiplier of the non-normalized moment is
given by

αu = [αr
u,0 + ln(u0), α

r
u,1, . . . , α

r
u,N]T , (20)

where we use the Maxwell-Boltzmann entropy η(f) =
f log(f)− f .

3.2. Neural network approximations of the entropy
closure

We present a twice differentiable, convex neural network
approximation hn

θ to the minimal entropy functional hn =
h(un) of the normalized moment system. A neural network
approximation, which we denote by Nθ, constructed with
these properties in mind preserves the structural properties
of the moment system. Using the intrinsic structure of the
dual problem (8), we train the networks on the entropy h, the
Lagrange multiplier αu and the moment reconstruction u.
Assuming the neural network is trained, i.e. it approximates
the entropy hn sufficiently well, we have the following
relations,

hn
θ =Nθ(u

r) ≈ hn, (21)

αr
θ =

d

dur
Nθ(u

r) ≈ d

dur
hn = αr

u, , (22)

αr
θ,0 =− ln(⟨exp(αr

θ ·mr)⟩) ≈ αr
u,0 (23)

fθ =η′∗(α
n
θ ·m) ≈ η′∗(α

n
u ·m) = fu, (24)

un
θ = ⟨mη′∗(α

n
θ ·m)⟩ ≈ ⟨mη′∗(α

n
u ·m)⟩ = un, (25)

by using Eq. (7), Eq. (12), Eq. (19) and the definition of
the moment vector. The neural network architecture and its
integration in a moment solver is displayed in Fig. 1 and
implementation details can be found in Appendix C.1.
The idea of the second neural network closure for the dual
minimal entropy problem in Eq. (8), makes use of the fol-
lowing characterization of multivariate convex functions

Structure preserving neural networks: A case study in the entropy closure of the Boltzmann equation

Figure 1. Input convex neural network closure. Model input vectors are depicted in blue. Red vectors are outputs, on which the model is
trained on. When the trained model is employed, the yellow solution vector is used to construct the flux for the kinetic solver .

via montonicity of their gradients (Berkovitz, 2003). Let
U ⊂ RN be a convex set. A function G : U → Rd is
monotonic, if and only if (G(x)−G(y)) · (x− y) ≥ 0 for
all x, y ∈ U . Let g : U → R differentiable. Then g is
convex, if and only if ∇g : U → Rd is monotonic. As a
consequence, if the mapping un → αn

u is monotonic for
all un ∈ Rn, then the corresponding entropy functional is
hn is convex in un. A trained monotonic neural network,
that approximates the moment to Lagrange multiplier map,
fulfills the following relations,

αr
θ =Nθ(u

r) ≈ αr
u, (26)

αr
θ,0 =− ln(⟨exp(αr

θ ·mr)⟩) ≈ αr
u,0, (27)

fθ =η′∗(α
n
θ ·m) ≈ η′∗(α

n
u ·m) = fu, (28)

un
θ = ⟨mη′∗(α

n
θ ·m)⟩ ≈ ⟨mη′∗(α

n
u ·m)⟩ = un, (29)

hn
θ =αn

θ · un − ⟨η∗(αn
θ ·m)⟩ ≈ hn.s (30)

The network architecture, end to end training loop and in-
tegration in the solver are displayed in Appendix C.2 in
Fig. 8.
We briefly examine the structural properties of a convex
neural network based entropy closure. The primary output
of the input convex neural network (21) directly takes on the
role of an surrogate entropy of the moment system, since it is
convex by design. In the proof of the hyperbolicity property,
which is conducted in (Levermore, 1996) for αu and u as
the system variable, h′′, respectively h′′

∗ , must be symmetric
positive definite, which is given for the input convex neural
network. Strict convexity of the entropy functional h is the
crucial requirement for the related properties entropy dissi-
pation and the H-theorem (Levermore, 1996) as well. The
monotonic neural network implicitly defines a convex en-
tropy only after converged training, as seen in Eq. (30). The

invariant range property of fθ depends solely on the range
of η′∗. By definition of the Maxwell-Boltzmann entropy, the
neural network based entropy closure is of invariant range,
since fθ(v) = exp(αn

θ · m(v)) > 0. Interchanging the
entropy functional by a neural network does not affect the
conservation property of the moment system.

4. Generalization gap and data generation
In this section, we construct a local bound to the general-
ization gap for the approximated gradient of a input convex
neural network, which yields the Lagrange multiplier αu

in case of the neural entropy closure. Based on this error
bound, we present a training data generation strategy.
In contrast to many applications of neural networks, the min-
imal entropy closure is a self contained problem with a clear
data to solution map. Furthermore, the set of potential in-
puts Rr to the neural network is bounded and convex. This
provides more options to sample training data than common
machine learning applications. The training data distribu-
tion heavily influences the trained model and therefor the
generalization gap (E et al., 2020b). The generalization gap
is defined as

|L (XT , θ
∗)− L (X, θ∗)| , (31)

where θ∗ = minθ L (XT , θ,) is the set of parameters, that
minimizes the training loss. The generalization gap de-
scribes the performance difference of the neural network
with parameters θ∗ between the training data XT and any
unseen world data X . Thus we are left with a modelling
decision about the data generation.
A popular method for generating data for neural network
models that interact with numerical differential equation

Structure preserving neural networks: A case study in the entropy closure of the Boltzmann equation

a) αn
u over un

1 b) h over un
1

Figure 2. Data to solution maps for the 1D M1 closure

solvers is to generate the training data by direct simulation,
see e.g. (Huang et al., 2021; Xiao & Frank, 2021; Lei et al.,
2020). However, the generated data is strongly biased to-
wards the chosen simulation setups and the models might
generalize poorly.

4.1. Generalization gap for input convex neural
networks data sampling strategy

In this sections we present our findings to the generalization
gap for the derivative approximation of a convex neural
network Nθ that approximates a convex function f∗ and
derive a data sampling strategy. The network is trained (at
least) in Sobolev norm, i.e. the training loss reads

L (XT , θ
∗) =

1

|T |
∑
i∈T

(
∥f∗(xi)−Nθ∗(xi)∥22

+ ∥∇f∗(xi)−∇Nθ∗(xi)∥22
)
,

(32)

when evaluating the loss over the whole data set. In
the following, we assume that the network is trained, i.e.
L (XT , θ

∗) = 0. Thus we have for all xi ∈ XT

f∗(xi) = Nθ(xi), ∇f∗(xi) = ∇Nθ(xi). (33)

Furthermore, let the sampling domain X ⊂ Rd be con-
vex and bounded and the neural network be convex by de-
sign. We are interested in the generalization gap of the
derivative neural network with respect to its input variable.
To this end, we consider the local generalization gap of
the neural network when using d + 1 training data points
Xd = {x0, . . . , xd}, if the sampling space X ⊂ Rd has
dimension d. Let C(Xd) be the convex hull of Xd and
x∗ ∈ C(Xd), which we call the point of interest. We as-
sume w.l.o.g x∗ = 0; if this does not hold, one can consider
the shifted setting C†(Xd) = C(Xd)−x∗, f† = f∗(·+x∗),

Figure 3. Illustration of the convex hull of the training points
C(Xd) (left) and the set of feasible gradients A (right) for d = 2.
The normal vectors to the faces Fi are the vectors of the training
points xi.

x† = x− x∗ instead. Using the characterization of a mono-
tonic function, we define the set A

A =
{
v ∈ Rd|v · xi ≤ ∇f∗(xi) · xi, i = 0, . . . , d

}
(34)

which is the dual polygon defined by the gradients at the
sampling points and the point of interest and can be seen
in Fig. 3. A contains all values which the gradient of a
convex function that has fixed gradients at the sampling
points x ∈ Xd can attain at the point of interest x∗.

Theorem 4.1. Let f∗ be convex, x∗ = 0 the point
of interest in the interior of C(Xd). Then A is a
bounded polyhedron, whith d + 1 faces, defined by
Fi =

{
v ∈ Rd|v · xi = ∇f∗(xi) · xi

}
and vertices vi =⋂

j ̸=i Fj .

The proof can be found in Appendix D.1. A direct con-
sequence of Theorem 4.1 is an local upper bound for the

Structure preserving neural networks: A case study in the entropy closure of the Boltzmann equation

generalization gap of the gradient of an input convex net-
work trained on a given training data set XT

∥∇f∗(x)−∇Nθ(x)∥ ≤ diam(Ax∗), (35)

where Ax∗ is the polyhedron of feasible gradients w.r.t the
point of interest x∗ and the local training points Xd. A
first conclusion is that the diam(A) does not depend on the
distance between the point of interest and any of the local
training data points Xd, since by definition of A in Eq. (34),
one can divide by the norm of xi − x∗ on both sides of the
inequality for the boundary of A. Thus in the following we
assume normalized xi.
The following theorem gives a more precise representation
of diam(Ax∗).

Theorem 4.2. Let A be defined by Eq. (34). Let the relative
vectors xi have unit length and vi is the vertex opposing the
face Fi. The matrix Xi = [xn

0 , . . . , x
n
i−1, x

n
i+1, . . . , x

n
d]

T

contain the vectors of normalized sampling points relative
to the point of interest x∗, i.e. xn

i = xi/ ∥xi∥2.
Furthermore, let bi = [∇f∗(x0) · xn

0 , . . . ,∇f∗(xi−1) ·
xn
i−1, f

∗(xi+1) ·xn
i+1, . . . ,∇f∗(xd) ·xn

d]
T be a vector. Un-

der the assumptions of Theorem 4.1, the vertex vi is given
by

Xivi = bi (36)

Additionally, we can estimate the distance between two
vertices vi and vj by

∥vi − vj∥2 ≤
(∥∥X−1

i

∥∥ +
∥∥X−1

j

∥∥)Cx∗ , (37)

where Cx∗ = maxk,l ∥∇f∗(xk)−∇f∗(xl)∥2 and
∥∥X−1

i

∥∥
denotes the corresponding operator norm of X−1

i .

The proof can be found in Appendix D.2. A direct conse-
quence is

∥∇f∗(x)−∇Nθ(x)∥ ≤ diam(Ax∗) (38)

≤ max
i,j∈A

(∥∥X−1
i

∥∥ +
∥∥X−1

j

∥∥)Cx∗ .

First, diam(A) → ∞, if dist(x∗, ∂C(Xd)) → 0, since the
normals of at least two neighboring boundaries of A become
(anti)parallel to each other.
Additionally we find, that for a fixed point of interest
and angles between the local training points, the size of
diam(A) depends only on the norm distance of ∇f∗(xi),
i = 0, . . . , d, which is encoded in the definition of Cx∗ . The
smaller the norm distance of the gradients of the sample
points, the smaller gets Cx∗ .
By chosing the maximum over all local error bounds for
a given set of training points, we can establish a worst
case generalization error for a input convex neural network
trained on this set. In the application case of the neural
entropy closure, the input data set is Rr, which is bounded

and convex. Thus, the argument is viable everywhere ex-
cept at the boundary of the convex hull of all training data,
assuming a suitable distribution of training data points. Re-
mark, that the polyhedron can be shrunken by including
more training points to the set Xd.

4.2. Sampling of the normalized realizable set

The entropy minimization problem of Eq. (8) becomes in-
creasingly difficult to solve near the boundary of the re-
alizable set ∂R (Alldredge et al., 2012). Close to ∂Rn,
the condition number of the Hessian matrix of the entropy
functional hn with respect to αn

u in Eq. (9)

H(αn
u) = ⟨m×mη∗(α

n
u ·m)⟩ , (39)

can become arbitrarily large, which causes numerical
solvers to fail rather unforgivingly. At the boundary ∂Rn,
H(αn

u) singular, and the minimal entropy problem has no
solution. In the space of Lagrange multipliers, this translates
to αn

u growing beyond all bounds, which leads to numerical
instabilities when computing the reconstruction of u. The
simplest case of the minimal entropy closure, the 1D M1

closure with Rr = [−1, 1], already incorporates these diffi-
culties, see Fig. 2.
No matter if we sample u and then compute αn

u or vice
versa, a sampling strategy must incorporate a meaningful
distance measure to ∂Rn. Since we do not have a charac-
terization of ∂Rn in general (Lasserre, 2009), we use the
condition number of H(αn

u) to establish an implicit notion
of distance to ∂Rr. The Hessian is symmetric and positive
definite, thus condition number is the ratio of the biggest and
smallest eigenvalue. It is singular at ∂Rr, so the smallest
possible eigenvalue λmin is 0, and we use λmin to measure
the distance to the boundary of the realizable set. As a
consequence of the above considerations, we generate the
training data XT by sampling reduced Lagrange multipliers
in a set

BM,τ = {αr
u : ∥αr

u∥ < M ∩ λmin(H(αn
u)) > τ} (40)

using rejection sampling. The Lagrange multipliers are sam-
pled uniformly with a low-discrepancy sampling method
from BM,τ to reduce the generalization gap. Low-
discrepancy sampling methods have a positive impact for
neural network training, especially for high data dimen-
sions (Mishra & Rusch, 2020). A detailed evaluation of the
data sampling strategy is given in Appendix E.

5. Numerical results
In this section, we present numerical results and investigate
the performance of the neural entropy closure. The training
performance on for the 1D M1, 1D M2 and 2D M1 clo-
sures for both neural network architectures using training

Structure preserving neural networks: A case study in the entropy closure of the Boltzmann equation

a) 1D M1 closure b) 1D M2 closure

Figure 4. Moments of the solution of the an-isotropic inflow test case at tf = 0.7. Comparison of the benchmark solution, the input
convex closure and the monotonic closure.

data generated using the sampling strategy of Sec. 4 are dis-
cussed in Appendix F. The converged mean squared error
on the validation set is around O(1e−4) to O(1e−6).
The neural network based closures are orders of magnitude
more computationally compared to a Newton based solver.
A Newton solver needs to compute and invert the Hessian of
the dual minimal entropy closure of Eq. (39), which requires
the evaluation of the velocity integral, in every descent step.
Depending on the condition and the distance to ∂R, the op-
timizer requires up to O(1e3) iterations for the closure of a
single moment u. Thus the neural networks yield speedups
of up to O(1e3) compared to the Newton based closure.
This yields a speedup of the solver of over 80%, depending
on the grid size and order of the closure. For bigger spatial
grids and higher moment orders, the speedup increases. A
quantitative discussion the computational efficiency in Ap-
pendix G.
We conduct synthetic tests to evaluate the generalization
gap on the whole realizable set Rn for both network archi-
tectures trained on identical data sets. The relative error
of the neural network prediction of hθ, αn

θ and un
θ is mea-

sured. The relative error of the monotonic architecture is
larger by half an order of magnitude compared to the input
convex network. Note, that the local error bound for the
generalization gap is only strictly applicable for the input
convex architecture. Moreover, the generalization error for
un
θ is smallest and of order O(1e−3), whereas the error in

αn
θ biggest and of order O(1e−2). Reason for this is, that

the reconstruction map αn
θ → un

θ is well conditioned. A
detailed discussion can be found in Appendix H.

5.1. An-isotropic inflow into an isotropically scattering,
homogeneous medium in 1D

Let us first study the particle transport in an isotropic scat-
tering medium. We consider the one-dimensional geometry,

where the linear Boltzmann equation reduces to

∂tf + v∂xf = σ

∫ 1

−1

1

2
(f(v∗)− f(v)) dv∗ − τf, (41)

where σ is a scattering coefficient and τ is an absorbtion
coefficient. The corresponding moment model becomes

∂tu+ ∂x ⟨vmfu⟩ = σ ⟨mQ(fu)⟩ − τu (42)
fu = η∗(αθ ·m) (43)

The initial condition of the computational domain is set as
vacuum with f(0, x,v) = ϵ, where 1 ≫ ϵ > 0 is a safety
treshold, since the normalized vector un is undefined for
u0 = 0 and 0 ∈ ∂R. An an-isotropic inflow condition is
imposed at the left boundary of domain with

f(t > 0, x = 0, v) =

{
0.5 if v > 0

0 if v ≤ 0,
(44)

and the right hand side boundary is equipped with a farfield
condition. The domain is resolved using a structured grid
in space using a kinetic upwind scheme (Kristopher Gar-
rett et al., 2015) and an explicit Euler scheme in time. The
benchmarking solver uses a Newton based optimizer with
linesearch to compute the minimal entropy closure. The
CFL number is set to 0.4 to avoid that the finite volume up-
date steps outside the realizable domain R, (Olbrant et al.,
2012). The detailed computational setup can be found in
Table 3. The solution profiles at final time tf = 0.7 of the
neural network based entropy closed moment system and
the reference solver are presented in Fig. 4 for the M1 and
M2 system. We can see that the systems dynamics are well
captured by both neural network architectures.
The errors of the neural network based simulations in com-

parison with the benchmark solution are displayed in Fig. 12
and the relative errors in Fig. 13 in Appendix I.1. One can

Structure preserving neural networks: A case study in the entropy closure of the Boltzmann equation

Figure 5. Snapshot of the benchmark solution of the 2D M1 test
case. The colorbar indicates the value of u0 at a grid cell.

observe in both test cases, that the errors exhibited by the
input convex network are one order of magnitude lower
than the errors of the monotonic network. Overall, the M1
network architectures stay mostly within 1% relative error
to the benchmark solution and the M2 network closures
within 5%. In both test cases, the region which exceeds this
error level is the tip of the wave-front, where the appearing
moments are very close to ∂R, where the minimal entropy
closure is very ill conditioned and the networks are hard to
train. A detailed error explanation and a convergence study
is given in Appendix I.1.

5.2. Particles in a 2D non scattering medium with
periodic initial conditions

We consider a rectangular domain in two spatial dimensions.
This test case considers a non scattering and non absorbing
medium, i.e. σ = τ = 0, for which the Boltzmann moment
system minimal entropy closure reads

∂tu+ ∂x ⟨vxmfu⟩+ ∂y ⟨vymfu⟩ = 0

fu = η∗(αu ·m)
(45)

The Boltzmann equation is equipped with periodic initial
conditions that translate to the M1 moment equations

u0 = 1.5 + cos(2πx) cos(2πy), (x,y) ∈ X, (46)
u1 = 0.3u0, u2 = 0.3u0. (47)

Periodic boundary conditions are imposed on the equations
to get a well posed system of equations. Figure 5 in Ap-
pendix I.2 shows a snapshot of the flow field computed with
the benchmark solver and Fig. 14 displays snapshots of the
relative error at each grid cell of the flow field at the same it-
eration as the benchmark solver in Fig. 5. The relative errors
of both neural networks exhibit periodic behavior and are
in the range of 1% or lower. Similarly to the 1D test cases,
the input convex architecture is again slightly more accurate

Figure 6. Comparison of the total entropy of the systems using
neural network closures and Newton based closures. For better
readability only a fraction of the time steps are displayed.

than the monotonic counterpart. Lastly, we analyze the total
entropy of the system at each time step. Due to the periodic
boundary conditions and σ = τ = 0, we have no particle
sinks or sources in the system and the system is closed. We
have chosen the upwind scheme for the numerical flux of
the moment system, which is an entropy dissipating scheme.
Figure 6 shows the dissipation of the mathematical entropy
of the system over time and compares the entropy of the
reference solution with the two neural network architec-
tures. All methods are entropy dissipating, however, the
input convex neural network exhibits a smaller difference
to the reference entropy. We can conclude, that the neural
network based hybrid solver preserves the structural prop-
erties of the reference system and computes the numerical
solution within reasonable accuracy. Convergence analysis
and additional discussion can be found in Appendix I.2.

6. Summary and conclusion
In this work we model the minimal entropy closure of the
Boltzmann moment system with two different deep neural
network architectures and thereby successfully construct
a hybrid differential equation solver consisting of neural
network and numerical components. With enforced convex-
ity of the neural network based closures, crucial structural
properties of the underlying system of partial differential
equations are conserved, which allows for physically accu-
rate simulations while increasing training performance of
the network. Convexity of the neural networks and the fact,
that both primary network output and the first derivative is
used in the training loss enables a local analysis and bound
of the generalization gap. The error analysis is used to con-
struct an optimal data sampling strategy for the minimal

Structure preserving neural networks: A case study in the entropy closure of the Boltzmann equation

entropy closure for arbitrary spatial dimension and arbi-
trary length of the velocity basis. Synthetic and numerical
test cases confirm the accuracy of the of the hybrid solver
compared to a traditional benchmark solution. The neural
networks accelerate the solver by 80% in our test cases. Fu-
ture work will focus on solving the challenges of generating
data and predicting accurate closures near the boundary of
the realizable set.

Acknowledgements
The work of Steffen Schotthöfer, Tianbai Xiao and Mar-
tin Frank funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) in the frame of the
priority programme SPP 2298 ”Theoretical Foundations of
Deep Learning” – Projectnumber 441826958. The work
of Cory Hauck is sponsored by the Office of Advanced
Scientific Computing Research, U.S. Department of En-
ergy, and performed at the Oak Ridge National Laboratory,
which is managed by UT-Battelle, LLC under Contract No.
De-AC05-00OR22725 with the U.S. Department of Energy.
The United States Government retains and the publisher,
by accepting the article for publication, acknowledges that
the United States Government retains a non-exclusive, paid-
up, irrevocable, world-wide license to publish or reproduce
the published form of this manuscript, or allow others to
do so, for United States Government purposes. The De-
partment of Energy will provide public access to these re-
sults of federally sponsored research in accordance with the
DOE Public Access Plan (http://energy.gov/downloads/doe-
public-access-plan).

References
Alldredge, G. W., Hauck, C. D., and Tits, A. L. High-

order entropy-based closures for linear transport in slab
geometry ii: A computational study of the optimization
problem. SIAM Journal on Scientific Computing, 34
(4):B361–B391, 2012. doi: 10.1137/11084772X. URL
https://doi.org/10.1137/11084772X.

Alldredge, G. W., Frank, M., and Hauck, C. D. A regu-
larized entropy-based moment method for kinetic equa-
tions. SIAM Journal on Applied Mathematics, 79(5):
1627–1653, 2019. doi: 10.1137/18M1181201. URL
https://doi.org/10.1137/18M1181201.

Amos, B., Xu, L., and Kolter, J. Z. Input convex neural
networks. In Precup, D. and Teh, Y. W. (eds.), Pro-
ceedings of the 34th International Conference on Ma-
chine Learning, volume 70 of Proceedings of Machine
Learning Research, pp. 146–155. PMLR, 06–11 Aug
2017. URL http://proceedings.mlr.press/
v70/amos17b.html.

Berkovitz, L. D. Convexity and optimization in Rn, vol-
ume 63. John Wiley & Sons, 2003.

Boyd, S. and Vandenberghe, L. Convex Optimization.
Cambridge University Press, 2004. doi: 10.1017/
CBO9780511804441.

Brunner, T. Forms of approximate radiation transport. 2002.

Camminady, T., Frank, M., Küpper, K., and Kusch, J.
Ray effect mitigation for the discrete ordinates method
through quadrature rotation. J. Comput. Phys., 382:105–
123, 2019.

Cercignani, C. The Boltzmann Equation and Its Applica-
tions. Springer, New York, NY, 1988. ISBN 978-1-4612-
1039-9. doi: https://doi.org/10.1007/978-1-4612-1039-9.

Chahine, M. T. Foundations of radiation hydrodynamics
(dimitri mihalas and barbara weibel mihalas). Siam Re-
view, 29:648–650, 1987.

Chen, Y., Shi, Y., and Zhang, B. Optimal control via neural
networks: A convex approach, 2019.

Curto, R. E. and Fialkow, L. A. Recursiveness, positivity,
and truncated moment problems. Houston J. Math, pp.
603–635.

Czarnecki, W. M., Osindero, S., Jaderberg, M., Swirszcz,
G., and Pascanu, R. Sobolev training for neural networks.
CoRR, abs/1706.04859, 2017. URL http://arxiv.
org/abs/1706.04859.

E, W., Han, J., and Zhang, L. Integrating machine learning
with physics-based modeling, 2020a. URL https://
arxiv.org/abs/2006.02619.

E, W., Ma, C., Wojtowytsch, S., and Wu, L. Towards a
mathematical understanding of neural network-based ma-
chine learning: what we know and what we don’t. CoRR,
abs/2009.10713, 2020b. URL https://arxiv.org/
abs/2009.10713.

Garrett, C. K. and Hauck, C. D. A comparison of mo-
ment closures for linear kinetic transport equations: The
line source benchmark. Transport Theory and Statistical
Physics, 42(6-7):203–235, 2013. doi: 10.1080/00411450.
2014.910226. URL https://doi.org/10.1080/
00411450.2014.910226.

Han, J., Ma, C., Ma, Z., and E, W. Uniformly accurate
machine learning-based hydrodynamic models for ki-
netic equations. Proceedings of the National Academy
of Sciences, 116(44):21983–21991, 2019. ISSN 0027-
8424. doi: 10.1073/pnas.1909854116. URL https:
//www.pnas.org/content/116/44/21983.

https://doi.org/10.1137/11084772X
https://doi.org/10.1137/18M1181201
http://proceedings.mlr.press/v70/amos17b.html
http://proceedings.mlr.press/v70/amos17b.html
http://arxiv.org/abs/1706.04859
http://arxiv.org/abs/1706.04859
https://arxiv.org/abs/2006.02619
https://arxiv.org/abs/2006.02619
https://arxiv.org/abs/2009.10713
https://arxiv.org/abs/2009.10713
https://doi.org/10.1080/00411450.2014.910226
https://doi.org/10.1080/00411450.2014.910226
https://www.pnas.org/content/116/44/21983
https://www.pnas.org/content/116/44/21983

Structure preserving neural networks: A case study in the entropy closure of the Boltzmann equation

Hauck, C., Levermore, C. D., and Tits, A. Convex dual-
ity and entropy-based moment closures: Characterizing
degenerate densities. 2008 47th IEEE Conference on
Decision and Control, pp. 5092–5097, 2008.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. CoRR, abs/1512.03385, 2015.
URL http://arxiv.org/abs/1512.03385.

Huang, J., Cheng, Y., Christlieb, A. J., and Roberts, L. F.
Machine learning moment closure models for the radia-
tive transfer equation iii: enforcing hyperbolicity and
physical characteristic speeds, 2021.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
CoRR, abs/1502.03167, 2015. URL http://arxiv.
org/abs/1502.03167.

Junk, M. Domain of Definition of Levermore’s Five-
Moment System. Journal of Statistical Physics, 93
(5-6):1143–1167, December 1998. doi: 10.1023/B:
JOSS.0000033155.07331.d9.

Junk, M. Maximum entropy for reduced moment prob-
lems. 1999. URL http://nbn-resolving.de/
urn:nbn:de:hbz:386-kluedo-6135.

Junk, M. and Unterreiter, A. Maximum entropy mo-
ment systems and galilean invariance. 2001. URL
http://nbn-resolving.de/urn:nbn:de:
hbz:386-kluedo-11866.

Kershaw, D. Flux limiting nature‘s own way – a new method
for numerical solution of the transport equation. 1976.

Kreı̆n, M., Louvish, D., and Nudel’man, A. A. The markov
moment problem and extremal problems. 1977.

Kristopher Garrett, C., Hauck, C., and Hill, J. Opti-
mization and large scale computation of an entropy-
based moment closure. Journal of Computational
Physics, 302:573 – 590, 2015. ISSN 0021-
9991. doi: https://doi.org/10.1016/j.jcp.2015.09.
008. URL http://www.sciencedirect.com/
science/article/pii/S0021999115005896.

Lasserre, J. B. Moments, Positive Polynomials
and Their Applications. IMPERIAL COL-
LEGE PRESS, 2009. doi: 10.1142/p665. URL
https://www.worldscientific.com/doi/
abs/10.1142/p665.

LeCun, Y. A., Bottou, L., Orr, G. B., and Müller, K.-R.
Efficient BackProp, pp. 9–48. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2012. ISBN 978-3-642-35289-8. doi:
10.1007/978-3-642-35289-8 3. URL https://doi.
org/10.1007/978-3-642-35289-8_3.

Lei, H., Wu, L., and E, W. Machine-learning-based non-
newtonian fluid model with molecular fidelity. Physical
Review E, 102(4), Oct 2020. ISSN 2470-0053. doi:
10.1103/physreve.102.043309. URL http://dx.doi.
org/10.1103/PhysRevE.102.043309.

Levermore, C. Moment closure hierarchies for kinetic theo-
ries. Journal of Statistical Physics, 83:1021–1065, 1996.

Levermore, C. D. Entropy-based moment closures for
kinetic equations. Transport Theory and Statisti-
cal Physics, 26(4-5):591–606, 1997. doi: 10.1080/
00411459708017931. URL https://doi.org/10.
1080/00411459708017931.

Lewis, E. and Miller, W. Computational methods
of neutron transport. John Wiley and Sons, Inc,
1984. URL http://inis.iaea.org/search/
search.aspx?orig_q=RN:17089238.

Li, Z., Dong, B., and Wang, Y. Learning invariance pre-
serving moment closure model for boltzmann-bgk equa-
tion, 2021. URL https://arxiv.org/abs/2110.
03682.

Markowich, P., Ringhofer, C., and Schmeiser, C. Semicon-
ductor equations. 1990.

Mishra, S. and Rusch, T. K. Enhancing accuracy of deep
learning algorithms by training with low-discrepancy se-
quences. CoRR, abs/2005.12564, 2020. URL https:
//arxiv.org/abs/2005.12564.

Monreal, P. Moment realizability and Kershaw closures
in radiative transfer. PhD thesis, Aachen, 2012. URL
https://publications.rwth-aachen.de/
record/210538. Prüfungsjahr: 2012. - Publika-
tionsjahr: 2013; Aachen, Techn. Hochsch., Diss.,
2012.

Olbrant, E., Hauck, C. D., and Frank, M. A realizability-
preserving discontinuous galerkin method for the m1
model of radiative transfer. Journal of Computa-
tional Physics, 231(17):5612–5639, 2012. ISSN
0021-9991. doi: https://doi.org/10.1016/j.jcp.2012.03.
002. URL https://www.sciencedirect.com/
science/article/pii/S0021999112001362.

Pavan, V. General entropic approximations for canonical
systems described by kinetic equations. Journal of Statis-
tical Physics, 142:792–827, 2011.

Porteous, W. A., Laiu, M. P., and Hauck, C. D. Data-
driven, structure-preserving approximations to entropy-
based moment closures for kinetic equations, 2021.

Sadr, M., Torrilhon, M., and Gorji, M. H. Gaussian process
regression for maximum entropy distribution. Journal of

http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
http://nbn-resolving.de/urn:nbn:de:hbz:386-kluedo-6135
http://nbn-resolving.de/urn:nbn:de:hbz:386-kluedo-6135
http://nbn-resolving.de/urn:nbn:de:hbz:386-kluedo-11866
http://nbn-resolving.de/urn:nbn:de:hbz:386-kluedo-11866
http://www.sciencedirect.com/science/article/pii/S0021999115005896
http://www.sciencedirect.com/science/article/pii/S0021999115005896
https://www.worldscientific.com/doi/abs/10.1142/p665
https://www.worldscientific.com/doi/abs/10.1142/p665
https://doi.org/10.1007/978-3-642-35289-8_3
https://doi.org/10.1007/978-3-642-35289-8_3
http://dx.doi.org/10.1103/PhysRevE.102.043309
http://dx.doi.org/10.1103/PhysRevE.102.043309
https://doi.org/10.1080/00411459708017931
https://doi.org/10.1080/00411459708017931
http://inis.iaea.org/search/search.aspx?orig_q=RN:17089238
http://inis.iaea.org/search/search.aspx?orig_q=RN:17089238
https://arxiv.org/abs/2110.03682
https://arxiv.org/abs/2110.03682
https://arxiv.org/abs/2005.12564
https://arxiv.org/abs/2005.12564
https://publications.rwth-aachen.de/record/210538
https://publications.rwth-aachen.de/record/210538
https://www.sciencedirect.com/science/article/pii/S0021999112001362
https://www.sciencedirect.com/science/article/pii/S0021999112001362

Structure preserving neural networks: A case study in the entropy closure of the Boltzmann equation

Computational Physics, 418:109644, 2020. ISSN 0021-
9991. doi: https://doi.org/10.1016/j.jcp.2020.109644.
URL https://www.sciencedirect.com/
science/article/pii/S0021999120304186.

Schotthöfer, S. neuralentropyclosures.
https://github.com/CSMMLab/
neuralEntropyClosures, 2021.

Schotthöfer, S., Wolters, J., Kusch, J., Xiao, T., and Stam-
mer, P. Kit-rt. https://github.com/CSMMLab/
KiT-RT, 2021.

Xiao, T. and Frank, M. Using neural networks to accelerate
the solution of the boltzmann equation. Journal of
Computational Physics, 443:110521, 2021. ISSN 0021-
9991. doi: https://doi.org/10.1016/j.jcp.2021.110521.
URL https://www.sciencedirect.com/
science/article/pii/S0021999121004162.

Xiao, T., Liu, C., Xu, K., and Cai, Q. A velocity-space
adaptive unified gas kinetic scheme for continuum and
rarefied flows. Journal of Computational Physics, 415:
109535, 2020.

https://www.sciencedirect.com/science/article/pii/S0021999120304186
https://www.sciencedirect.com/science/article/pii/S0021999120304186
https://github.com/CSMMLab/neuralEntropyClosures
https://github.com/CSMMLab/neuralEntropyClosures
https://github.com/CSMMLab/KiT-RT
https://github.com/CSMMLab/KiT-RT
https://www.sciencedirect.com/science/article/pii/S0021999121004162
https://www.sciencedirect.com/science/article/pii/S0021999121004162

Structure preserving neural networks: A case study in the entropy closure of the Boltzmann equation

A. Introduction to kinetic theory and moment methods
A.1. Kinetic theory

In many applications, a macroscopic description of the physical systems is no longer applicable and one has to rely on a
more general description, which is given by kinetic equations such as the Boltzmann equation. Example include neutron
transport (Lewis & Miller, 1984), radiative transport (Chahine, 1987) and semiconductors (Markowich et al., 1990) and
rarefied gas dynamics (Cercignani, 1988). The Boltzmann equation is a high dimensional integro-differential equation,
with phase space dependency on space and particle velocity. This high dimensionality of the phase space presents a severe
computational challenge for large scale numerical simulations.
The Boltzmann equation describes the space-time evolution of the one-particle kinetic density function f(t,x,v) in a
many-particle system

∂tf + v · ∇xf = Q(f). (48)

The phase space consists of time t > 0, space x ∈ X ⊂ R3, and particle velocity v ∈ V ⊂ R3. The left-hand side
of the equation describes particle transport, where the advection operator v · ∇x describes the movement of the particle
density with velocity v in the spatial directions. The integral operator Q(f) on the right hand side of the equation models
interaction of the particle with the background medium and collisions with other particles. If the particles only collide with
a background material one can model this behavior with the linear Boltzmann collision operator

Q(f)(v) =

∫
V

B(v∗,v) [f(v∗)− f(v)] dv∗, (49)

where the collision kernel B(v∗,v) models the strength of collisions at different velocities. If the interactions among particles
are considered, the collision operator becomes nonlinear, which is used in the application of gas dynamics. Well-posedness
of Eq. (48) requires appropriate initial and boundary conditions. The Boltzmann equation is a first-principles model based
on direct modeling. It possesses some key structural properties, which are intricately related to the physical processes and its
mathematical existence and uniqueness theory. We refer the reader to (Alldredge et al., 2019; Levermore, 1996), where
these properties are studied in detail.

A.2. Moment methods

Several numerical methods for solving the Boltzmann equation have been proposed, and are typically distinguished by the
way of discretization of the velocity space. The first major set methods are called nodal methods, (Lewis & Miller, 1984;
Camminady et al., 2019; Xiao et al., 2020), which evaluate the velocity space at specific quadrature points, which yields a
system of equations only coupled by the integral scattering operator. While computationally efficient, these methods suffer
from numerical artifacts, which are called ray effects (Camminady et al., 2019).
Moment methods encode the velocity dependence of the Boltzmann equation by multiplication with a vector of velocity
dependent basis functions m(v) ∈ RÑ , that consists of polynomials up to order N and subsequent integration over V. In
one spatial dimension, usually we have Ñ = N + 1, whereas in higher spatial dimensions Ñ equals the number of basis
functions up to order N . The solution of the resulting moment equation is the moment vector u ∈ RÑ and is calculated by

u(t,x) = ⟨m(v)f(t,x,v)⟩ . (50)

Common choices for the basis functions are monomials, spherical harmonics or hermite polynomials, depending on the
application. The moment vector satisfies the system of transport equations

∂tu(t,x) +∇x · ⟨vm(v)f⟩ = ⟨m(v)Q(f)⟩ , (51)

which is called moment system. By construction, the advection operator depends on f and thus, the moment system has
Ñ + 1 free variables, i.e. u ∈ RÑ and f , and only Ñ equations and is therefore underdetermined, i.e. unclosed. Moment
methods aim to find a meaningful closure for this system. The choice of the closure has severe implications on physical
and numerical accuracy as well as the mathematical structure of the closure. The simplest closure is a truncation closure,
with a linear reconstruction of f given by the first Ñ moments. However, this closure exhibits unphysical behaviour like
oscillations in some flow regimes (Brunner, 2002). In this work, we focus on the minimal entropy closure, which on the
reserves all above mentioned properties of the Boltzmann equation and accurately represents the modeled physics in a wide
range of flow regimes (Garrett & Hauck, 2013). However, this comes at the expense of high computational cost.

Structure preserving neural networks: A case study in the entropy closure of the Boltzmann equation

B. Data Structure and Dimension Reduction
In the following we consider the primal and dual minimal entropy closure optimization problem, review the characterization
of the realizable set as well as a dimension reduction and finally describe helpful relations between the moment u, Lagrange
multiplier αu, the entropy functional h and the corresponding variables of reduced dimension.
The minimal entropy optimization problem in Eq. (8) and the set of realizable moments R is studied in detail by by (Alldredge
et al., 2019; Levermore, 1997; Curto & Fialkow; Hauck et al., 2008; Junk, 1998; 1999; Junk & Unterreiter, 2001; Pavan,
2011). The characterization of R uses the fact that the realizable set is uniquely defined by its boundaries (Kreı̆n et al.,
1977). First we remark that the realizable set R ⊂ RÑ of the entropy closure problem of order N is generally an unbounded
convex cone. To see this consider the moment of order zero, u0 = ⟨f⟩ for any kinetic density function f ∈ Fm, which can
obtain values in (0,∞). For a fixed moment of order zero u0, the subset of the corresponding realizable moments of higher
order is bounded and convex (Kershaw, 1976; Monreal, 2012). Consequently, we consider the normalized realizable set R
and the reduced normalized realizable set Rr

Rn = {u ∈ R : u0 = 1} ⊂ RÑ , (52)

Rr =
{
ur ∈ RN : [1, urT]T ∈ Rn

}
⊂ RÑ−1, (53)

which are both bounded and convex (Kershaw, 1976; Monreal, 2012). This approach is also used in computational studies
of numerical solvers of the minimal entropy closure problem (Alldredge et al., 2012). We denote normalized moments and
reduced normalized moments as

un =
u

u0
= [1, ur

1, . . . , u
r
N]T ∈ RÑ , (54)

ur = [ur
1, . . . , u

r
N]T ∈ RÑ−1. (55)

We establish some relations between the Lagrange multiplier αu, the Lagrange multiplier of the normalized moment αn
u and

of the reduced normalized moment αr
u,

αn
u =

[
αr
u,0, α

r
u,1, . . . , α

r
u,N

]T ∈ RÑ , (56)

αr
u =

[
αr
u,1, . . . , α

r
u,N

]T ∈ RÑ−1. (57)

We define the reduced moment basis, which contains all moments of order n = 1, . . . , N , as

mr(v) = [m1(v), . . . ,mÑ (v)]T , (58)

since m0(v) = 1 is the basis function of order 0. For the computations we choose the Maxwell-Boltzmann entropy and a
monomial basis, however the relations can be analogously computed for other choices of entropy function and moment
basis. The Maxwell-Boltzmann entropy has the following definition, Legendre dual and derivative.

η(z) = z ln(z)− z, z ∈ D = R+ (59)
η′(z) = ln(z), z ∈ D = R+ (60)
η∗(y) = exp(y), y ∈ R (61)
η′∗(y) = exp(y), y ∈ R (62)

In one spatial dimension, we have v = v ∈ R and a monomial basis is given by m(v) = [1, v, v2, . . .]. Assuming knowledge
about the Lagrange multiplier αr

u of the reduced normalized moment we can derive an expression for αr
0 using the definition

of the moment of order zero,

1 = un
0 = ⟨m0η

′
∗(α

n
u ·m)⟩ = ⟨exp(αn

u ·m)⟩ =
〈
exp(αr

u ·mr) exp(αr
u,0 ·m0)

〉
, (63)

which we can transform to

αr
u,0 = − ln(⟨exp(αr

u ·mr)⟩) (64)

Structure preserving neural networks: A case study in the entropy closure of the Boltzmann equation

using m0(v) = 1. This yields the complete Lagrange multiplier αn
u of the complete normalized moment vector un. Finally,

we use a scaling relation (Alldredge et al., 2012) to recover the Lagrange multiplier of the original moment vector u, by
considering again the definition of the normalized moment

un = ⟨m exp(αn
u ·m)⟩ =

〈
m exp(αr

u ·mr) exp(αr
u,0)

〉
(65)

and multiply both sides with u0 > 0

u =
〈
exp(αr

u ·mr) exp(αr
u,0)u0

〉
=

〈
exp(αr

u ·mr) exp(αr
u,0 + ln(u0))

〉
, (66)

which yields the original Lagrange multiplier αu

αu = [αr
u,0 + ln(u0), α

r
u,1, . . . , α

r
u,N]T . (67)

This also implies that αu,i = αr
u,i for all i = 1, . . . , Ñ . For completeness, the entropy of the normalized moments

hn = h(un) and the entropy h(u) of the original moments have the relation

h(u) = α · u− ⟨exp(α ·m)⟩ (68)
= u0 (α

n · un + ln(u0))− ⟨exp(αn ·m+ ln(u0))⟩ (69)
= u0 (α

n · un + ln(u0))− ⟨exp(αn ·m⟩u0) (70)
= u0h(u

n) + u0 ln(u0), (71)

where we use Eq. (9) and (67). These scaling relations enable a dimension reduction for faster neural network training.
Furthermore, we use these relations to integrate the neural network models, which are trained on Rr, into the kinetic solver
that operates on R.

C. Architecture of the neural network based closures
In the following, we present the architectural details of the input convex and monotonic neural networks used as the closure
of the Boltzmann moment system. The implementation of the networks can be found in (Schotthöfer, 2021).

C.1. Input convex neural network approximation of the entropy functional hn

Convex neural networks have been inspected in (Amos et al., 2017), where the authors propose several deep neural networks
that are strictly convex with respect to the input variables by design. The design is led by the following principles (Boyd &
Vandenberghe, 2004) that yield sufficient conditions to build a convex function. First, a positive sum of convex functions is
convex. Second, let f : Rn → R be the concatenation of the functions h : Rk → R and g : Rn → Rk. Then f(x) = h(g(x))
is convex, if h is convex, h is non-decreasing in each argument and all gi=1,...,k are convex. Applying these conditions to
the definition of a layer of a neural network, yields that all entries of the weight matrix Wk must be positive in all layers
except the first. Furthermore, the activation function of each layer must be convex. The authors of (Chen et al., 2019) have
shown, that such a network architecture with ReLU activations is able dense in the space of convex functions. They first
show that an input convex network can approximate any maximum of afine functions, which itself can approximate any
convex function in the limit of infinite layers. However, in practice it turns out that very deep networks with positive weights
have difficulties to train. The authors of (Amos et al., 2017) therefore modify the definition of a hidden layer to

zk = σ(W z
k zk−1 +W x

k x+ bzk), k = 2, . . . ,M, (72)
zk = σ(W x

k u+ bzk), k = 1, (73)

where W z
k must be non-negative, and W x

k may attain arbitrary values. We choose the strictly convex softplus function

σ : R → R+, σ(y) = ln(exp(y) + 1) (74)

as the layer activation function for k = 1, . . . ,M − 1 and a linear activation for the last layer, since we are dealing with a
regression task. This leads to an at least twice continuously differentiable neural network. Non-negativity can be achieved
by applying a projection onto R+ to the elements of W z

k after a weight update. Next, we modify the first layer in Eq. (73) to

Structure preserving neural networks: A case study in the entropy closure of the Boltzmann equation

Figure 7. Input convex neural network closure. Model input vectors are depicted in blue. Red vectors are outputs, on which the model is
trained on. When the trained model is employed, the yellow solution vector is used to construct the flux for the kinetic solver .

include two prepossessing layers. We first zero center the input data w.r.t the mean vector of the training data set µu, then
we decorrelate the channels of the input vector w.r.t to the covariance matrix of the training data.

z∗1 = u− µu, (75)

z∗∗1 = ΛT
u z1∗, (76)

z1 = σ(W x
k z

∗∗
1 + bzk), (77)

where Λu is the eigenvector matrix of the covariance matrix of the training data set. The first two operations and the weight
multiplication of the dense layer are a concatenation of linear operations and thus do not destroy convexity as well. Centering
and decorrelation of the input data accelerate training, since the gradient of the first layer directly scales with the mean of
the input data. Thus a nonzero mean may cause zig-zagging of the gradient vector (LeCun et al., 2012). Lastly, we rescale
and center the entropy function values of the training data. Note, that in the following we switch to notation corresponding
to the entropy closure problem. We scale the entropy function values hn to the interval [0, 1] via

hn,∗ =
hn −minl∈T hn

l

maxl∈T hn
l −minl∈T hn

l

, (78)

which is equivalent to a shift and scale layer after the output layer of the neural network. Thus the gradient of the scaled
neural network output α∗

θ needs to be re-scaled to recover the original gradient,

αθ = α∗
θ

(
max
l∈T

hn
l −min

l∈T
hn
l

)
(79)

Both operations are linear with a positive multiplicator, thus do not break convexity.
We briefly describe the workflow of the neural network in training and execution time, which is illustrated in Fig. 7. For

training a given input convex neural network architecture, we use a training data-set XT =
{
ur
i , α

r
u,i, h

n
i

}
i∈T

, where we
first scale hn according to Eq. (78) and compute mean and covariance of {ur

i }i∈T for the shift and decorrelation layer. After

Structure preserving neural networks: A case study in the entropy closure of the Boltzmann equation

a forward pass through the modified input convex neural network, we obtain hn,∗
θ and by automatic differentiation through

the network w.r.t. ur, we obtain αr,∗
θ , which we scale using Eq. (79) to get αr

θ. Using Eq. (64) we reconstruct αr
θ,0 and

therefore αn
θ with Eq. (56). The normalized moments un

θ and the reduced normalized moments ur
θ are computed using

Eq. (65). The training loss function is evaluated on the mean squared error of ur
θ, hn,∗

θ and αr,∗
θ ,

L(ur, αr,∗
u , hn,∗; θ) =

1

|T |
∑
i∈T

∥∥∥hn,∗
i − hn,∗

θ,i

∥∥∥2
2
+ λ

∥∥∥αr,∗
u,i − αr,∗

θ,i

∥∥∥2
2
+

∥∥ur
i − ur

θ,i

∥∥2
2
. (80)

The parameter λ is used to scale the loss in αr
u to the same range as the loss in hn and ur. Training the neural network on the

Lagrange multiplier αr,∗
u corresponds to fitting the neural network approximation to the entropy functional hn,∗ in Sobolev

norm. The authors of (Czarnecki et al., 2017) found that neural network models trained on the additional knowledge of
derivative information archive lower approximation errors and generalize better.
When integrating the neural network in the kinetic solver, we gather the moments of all grid cells of the spatial domain from
the current iteration of the used finite volume scheme. The moments are first normalized in the sense of Eq. (54),then the
predicted αr

θ are obtained in the same manner as in the training workflow. Afterwards, we use Eq. (64) and (67) to obtain
αθ corresponding to the non-normalized moments u. Finally, Eq. (7) yields the closure of the moment system, from which
the numerical flux for the finite volume scheme can be computed.

C.2. Monotone neural network approximation of the Lagrange multiplier αn
u

No particular design choices about the neural network are made to enforce monotonicity, since the characterization
of monotonic functions is not constructive. To the best of our knowledge, there exists no constructive definition of
multidimensional monotonic function. Instead we construct an additional loss function to make the network monotonic
during training time. This is an important difference to the first approach, where the network is convex even in the untrained
stage and on unseen data points.
Definition C.1 (Monotonicity Loss). Consider a neural network Nθ : x 7→ y. Let XT the training data set. The monotonicity
loss is defined as

Lmono (x, θ) =
1

|T |2
∑
i∈T

∑
j∈T

ReLU (− (Nθ(xi)−Nθ(xj)) · (xi − xj)) . (81)

The ReLU function is defined as usual,

ReLU(x) =

{
x if x > 0

0 if x ≤ 0.
(82)

The monotonicity loss checks pairwise the monotonicity property for all datapoints of thetraining data set. If the dot product
is negative, the property is violated and the value of the loss is increased by the current dot product. This is a linear penalty
function and can be potentiated by a concatenation with a monomial function. Note, that we only validate the monotonicity
of the networkpointwise in a subset of the training data. As a consequence, the mathematical structures of the resulting
moment closure is only preserved in an empirical sense, i.e. if the realizable set and more importantly, the set of Lagrange
multipliers is sampled densely. The resulting neural network architecture is illustrated in Fig. 8. Normalization and the
meanshift and decorrelation layers in Eq. (75) and Eq. (76) is implemented analogously to the input convex neural network.
The core network architecture consists of a number of M ResNet blocks. The ResNet architecture has been successfully
employed in multiple neural network designs for multiple applications and was first presented in (He et al., 2015). The
ResNet blocks used in this work read as

z1k = BN(zk−1), (83a)

z2k = σ(z1k), (83b)

z3k = W ∗
k z

2
k + b∗k, (83c)

z4k = BN(z3k), (83d)

z5k = σ(z1k), (83e)

z6k = W ∗∗
k z2k + b∗∗k , (83f)

zk = z6k + zk−1, (83g)

Structure preserving neural networks: A case study in the entropy closure of the Boltzmann equation

Figure 8. Input convex neural network closure. Model input vectors are depicted in blue. Red vectors are outputs, on which the model is
trained on. When the trained model is employed, the yellow solution vector is used to construct the flux for the kinetic solver .

with the idea, that the skip connection in Eq. (83g) mitigates the gradient vanishing problem for deep neural networks.
Furthermore, we include a batch normalization (BN) layer in front of each activation, which reduces the problem internal
covariance shift (Ioffe & Szegedy, 2015), that many deep neural network structures suffer from, and which slows down the
training. Batch normalization is performed by applying pointwise the following two transformation to the previous layers
output zk,

z∗k =
zk−1 − E[zk−1]√

Var[zk−1] + ϵ
, (84)

zk = θ0z
∗
k + θ1, (85)

where θ0 and θ1 are trainable weights and E[zk−1] and Var[zk−1] denote the expectation value and the variance of the
current batch of training data, respectively.
One transforms the network output αr

θ to the values of interest αθ and ur
θ analogously to the input convex network design.

The entropy functional hr
θ directly computed from un

θ and αn
θ using Eq. (9). Training data rescaling and integration in the

kinetic solver follow the ideas of the input convex network design. The batchwise monotonicity loss is calculated using ur

and αr
θ, the gradient of the convex entropy functional hr. The loss function for the network training becomes

L(ur, αr,∗
u , hn,∗; θ) =

1

|B|
∑
i∈B

(∥∥∥hn,∗
i − hn,∗

θ,i

∥∥∥2
2
+

∥∥∥αr,∗
u,i − αr,∗

θ,i

∥∥∥2
2
+

∥∥ur
i − ur

θ,i

∥∥2
2

)
+ Lmono (u

r, θ) . (86)

D. Proofs for the stated theorems
In the following we give proof to the two theorems stated in this work.

D.1. Proof of Theorem 4.1

Proof. The proof is structured in two parts. First, we show that the vertices vi ∈ Rd are well defined, if x∗ is element of the
interior of C(Xd). Second, we show that all vi ∈ A. Thus any convex combination of vi is in A and therefore, A is defined
by a (bounded) polyhedron with vertices vi.
1. We show that vi are well defined. First, if the point of interest is element of the interior of C(Xd), then all xi ∈ Xd are

Structure preserving neural networks: A case study in the entropy closure of the Boltzmann equation

linearly independent. The boundary of the set of feasible gradients with respect to the sampling point xi and the point of x∗

interest consists of the hyperplane given by

Fi =
{
v ∈ Rd|v · xi = ∇f∗(xi) · xi

}
. (87)

Clearly, if all xi ̸= 0 are linearly independent, no hyperplanes are parallel or lie in each other. The proper intersection of d
hyperplanes in Rd yields a single point,

vi =
⋂
j ̸=i

Fj . (88)

which we define as vertex vi ∈ Rd, that touches all hyperplanes except Fi.
2. We show that all vi ∈ A. This means, that we have to show

vj · xi ≤ ∇f∗(xi) · xi, ∀i, j = 0, . . . , d (89)

By the definition of vj , we have

vj ∈ Fi, j ̸= i, (90)

so we are only concerned with

vi · xi ≤ ∇f∗(xi) · xi. (91)

We start by stating an auxiliary statement. Let pji = vj − vi for i ̸= j. If Xd is linearly independent and x∗ = 0 is in the
interior of C(Xd), then

sign(pji · xi) = sign(plk · xk), ∀i ̸= j, k ̸= l (92)

Linear independence of xi ∈ Xd and x∗ = 0 being in the interior of C(Xd) translates to

0 =

N∑
i=0

aixi, ai > 0. (93)

We have

pji · xi =
−1

ai

∑
m ̸=i

am (vj − vi) · xm (94)

=
−1

ai

 ∑
m̸=i,j

am (vj − vi) · xm + aj (vj − vi) · xj

 (95)

=
−1

ai

 ∑
m̸=i,j

am (vj · xm − vi · xm) + aj (vj − vi) · xj

 (96)

=
−1

ai

 ∑
m̸=i,j

am (∇f∗(xm) · xm −∇f∗(xm) · xm) + aj(vj − vi) · xj

 (97)

=
−1

ai
aj(vj − vi)xj =

aj
ai

(vi − vj)xj =
aj
ai

pij · xj , (98)

where we use the definition of the Face Fm. Since aj

ai
is positive sign(pji · xi) = sign(pij · xj) follows for all i ̸= j. Assume

pji · xi > 0 and phi · xi < 0. Then

vj · xi > vi · xi > vh · xi. (99)

Structure preserving neural networks: A case study in the entropy closure of the Boltzmann equation

Thus, we have

0 < (vj − vh) · xi = ∇(f∗(xi) · xi −∇(f∗(xi) · xi = 0, (100)

which is an contradiction to monotonicity of the gradient. Thus,

sign(pji · xi) = sign(pki · xi) = sign(pik · xk) = sign(plk · xl), ∀i ̸= j, k ̸= l. (101)

This means, that all face normals xi are either facing outward of the polyhedron defined by the vertices {vi} or all face
inward. Assume inward facing normals, then for each face of the polyhedron created by A, the feasible set is the half space
outside the current face of the polyhedron. Due to convexity the polyhedron defined by {vi}, this would imply, that A = ∅,
which contradicts continuity of the gradient of f∗ Thus we have outward facing normals. Finally, we have

0 < (vj − vi) · xi = ∇f∗(xi) · xi − vi · xi, (102)

and thus vi · xi < ∇f(xi) · xi, i.e. vi ∈ A for all i. Thus A is indeed a polygon defined by the vertices vi. By convexity, the
polyhedron A contains all feasible gradients of the point of interest.

D.2. Proof of Theorem 4.2

Proof. By definition of vi =
⋂

j ̸=i Fj and the fact that we can divide Eq. (34) by ∥xi∥ we get the linear systems. Let for
ξ ∈ Rd.

Cξ = max
k=0,...,d

∥∇f(xk)− ξ∥2 (103)

Then we have

|xj · (vi − ξ)| = |xi · (∇f∗(xi)− ξ)| ≤ ∥xi∥2 Cξ = Cξ ∀i = 0, . . . , d (104)

since xi has unit norm. Thus each entry of the vector Xivi has an absolute value smaller than Cξ. We interpret Xi as an
linear operator mapping (Rd, ∥·∥2) → (Rd, ∥·∥∞). Xi = [x0, . . . , xi−1, xi+1, . . . , xd]

T is invertible, if x∗ is in the interior
of C(Xd) and defines a mapping (Rd, ∥·∥∞) → (Rd, ∥·∥2). Consequently, we can estimate

∥Xi(vi − ξ)∥∞ ≤ Cξ, (105)

∥vi − ξ∥2 ≤
∥∥X−1

i

∥∥Cξ. (106)

Finally we get

∥vi − vj∥2 ≤ ∥vi − ξ∥2 + ∥ξ − vj∥2 ≤
(∥∥X−1

i

∥∥+
∥∥X−1

j

∥∥)Cξ, (107)

We can choose ξ = ∇f∗(xl) s.t.

max
k=0,...,d

∥∇f∗(xk)−∇f∗(xl)∥2 = max
k,l=0,...,d

∥∇f∗(xk)−∇f∗(xl)∥2 =: Cx∗ (108)

E. Suplementary material for the data generation strategy
In the following we give extended context to the chosen data generation strategy, and its superiority to data generation by
direct sampling of normalized moments un. Let us first consider proximity to the boundary in Rr directly. There exist
extensive studies about the characterization of the boundary ∂Rr and we use results by Kershaw (Kershaw, 1976) and
Monreal (Monreal, 2012). For the Maxwell-Boltzmann entropy and a monomial basis, Rr can be described in one spatial
dimension, i.e. V,X ⊂ R1 up to order N = 4 using the inequalities

1 ≥ ur
1 ≥ −1, (109a)

1 ≥ ur
2 ≥ (ur

1)
2, (109b)

ur
2 −

(ur
1 − ur

2)
2

1− ur
1

≥ ur
3 ≥ −ur

2 +
(ur

1 + ur
2)

2

1 + ur
1

, (109c)

ur
2 −

(ur
1 − ur

3)
2

(1− ur
2)

≥ ur
4 ≥ (ur

2)
3 + (ur

3)
2 − 2ur

1u
r
2u

r
3

ur
2 − (ur

1)
2

, (109d)

Structure preserving neural networks: A case study in the entropy closure of the Boltzmann equation

a)Rr, using uniform grid sampling of ur b) αr
u, using uniform grid sampling of ur

c) Rr, using uniform grid sampling of αr with ∞ norm
bound

d) αr
u, using uniform grid sampling of αr with ∞ norm

bound

e) Rr, using uniform low-discrepancy sampling of αr with
eigenvalue bound

f) αr
u, using uniform low-discrepancy sampling of αr with

eigenvalue bound

Figure 9. Scatter plots of 70000 data points for the 1D M2 model with data generated from different sampling strategies. The color bar
indicates the value of the minimal entropy functional h.

Structure preserving neural networks: A case study in the entropy closure of the Boltzmann equation

whereas higher moment order moments can be characterized using the more general results in (Curto & Fialkow). Equa-
tion (109) gives direct control over the boundary ∂Rr, since equality in one or more of the equations describes a boundary
of the normalized realizable set. In this case, the distance measure to ∂Rr is the norm distance. An example for normalized
moments of the M2 closure in d = 1 spatial dimensions with norm boundary distance 0.01 is shown in Fig. 9a) and the
corresponding Lagrange multipliers are shown in Fig. 9b). Note, that in Fig. 9a),c) and e), ∂Rr is displayed by the dotted
black line. More general results for arbitrarily high order moments in one spatial dimension can be found in (Kershaw,
1976). In three spatial dimensions necessary conditions have been constructed by (Monreal, 2012) for up to order N ≤ 2,
but a full characterization of ∂R remains an open problem (Lasserre, 2009).
From a numerical point of view, it is interesting to construct a notion of distance to ∂Rr directly in the space of Lagrange
multipliers, since it turns out that the magnitude of the ∥αr

u∥ has implications on the numerical stability of the neural network
training process. A first idea consists of a norm bound of αr

u, i.e. ∥αr
u∥ < M < ∞ (Alldredge et al., 2019; Porteous et al.,

2021; Sadr et al., 2020), which yields a convex subset of Lagrange multipliers. Fig. 9d) shows a uniform distribution of
αr
u,1 and αr

u,2, where αr
u,i ∈ [−40, 40], and Fig. 9c) displays the corresponding reconstructed moments un. However, this

approach gives no control over the boundary distance and produced very biased data distributions of ur. A comparison
of Fig. 9c) and d) shows, that two thirds of the sampled moments are concentrated in the regions near ur = (−1, 1) and
ur = (1, 1), which correspond to high entropy values h > 1.5 and are colored yellow. In contrast, Fig. 9a) and b) show that
there are no samples in the regions αr

u,1 > 10 and
∣∣αr

u,2

∣∣ > 10, since the corresponding moments ur are too close to the
boundary ∂Rr. As a conclusion, the second sampling strategy does not produce data with uniform distance to ∂Rr.
Lastly we employ the condition number as a boundary distance measure. Figure 9e)and f) show a uniform sampling, where
αr
u is sampled with eigenvalue λmin > 1e−7. Note, that on the one hand, the near boundary region of Rr is more densly

sampled than the interior, compare Fig. 9a) and e), whereas there is no over-representation of the regions near ur = (−1, 1)
and ur = (1, 1) and the set of sampled Lagrange multipliers, see Fig. 9f), is similar in shape to the Lagrange multipliers in
Fig. 9b).
The data generation method has an non negligible influence on the quality of training data, as Fig. 9c) and e) display. The
former are moments ur generated by a uniform grid sampling of αr

u, and the latter by uniform sampling of αr
u using a

low-discrepancy sampling method. The deformed grid in ur consists near ur
2 = 1.0 of very steep triangles of local training

points Xd, that means that a point of interest is always close to the boundary of C(Xd) which implies a big diameter for the
polyhedron of admissible gradients Ax∗ .

F. Neural network training
In the following we evaluate the training performance of the neural network architectures, which are implemented in Keras
using Tensorflow 2.6 and can be found in the Github repository (Schotthöfer, 2021).
The neural networks are trained on a subset of Rr that corresponds with Lagrange multipliers sampled from the set BM,τ of
Eq. (40). The data sampler can be found in the Github repostiroy (Schotthöfer et al., 2021). M and τ are chosen such that the
neural network training is numerically stable, since for high absolute values of αn

u,i, the term un = ⟨m exp (αn
um)⟩ leads to

a numerical overflow in single precision floating point accuracy, if the neural network training is not yet converged. In this
sense, the high condition number of the minimal entropy closure near ∂R translates to the neural network approximation.
The sampled data is split into training and validation set, where the validation consists of 10% randomly drawn samples of
the total data. Table 1 compares the validation losses of different neural network architectures after the training process has
converged. The layout of a neural network is defined in the format width × depth. Width describes the number of neurons in
one layer of the network and depth the number of building blocks of the network. A building block of the input convex
neural network is one (convex) dense layer. A building block of the monotonic neural network architecture is described by
Eq. (83). In addition to these layers, each model is equipped with a mean shift (75) and decorrelation (76) layer followed
by a dense layer as a preprocessing head. After the core architecture of the format width × depth, one more layer of the
respective core architecture with half the specified width and finally the output layer follows. The linear output layer of
the input convex neural network design is one dimensional, since we approximate the entropy hθ and the linear output
layer of the monotonic network design has dimension N , where N is the order of the moment closure and the length of the
reduced Lagrange multiplier vector αr

u. The input convex network with output data scaled to the interval [0, 1] uses a ReLU
activation, since we do not expect negative output values.
The networks are trained on an Nvidia RTX 3090 GPU in single-precision floating-point accuracy. For each network
architecture, we present the mean squared and mean absolute error for all quantities of interest averaged over the validation
data set. For the monotonic network, the monotonicity loss is additionally displayed. The converged mean squared error
on the validation set is around O(1e−4) to O(1e−6). For reference, the results of previous works of approximating the

Structure preserving neural networks: A case study in the entropy closure of the Boltzmann equation

minimal entropy closure using non-convex feed-forward neural networks in (Porteous et al., 2021) have been included
in the table. We can see that the ICNN architecture manages to improves the validation loss by an order of magnitude in
the M1 and M2 1D test case. The derivative of the ICNN architecture is far more accurate in the approximation of the
Lagrange multiplier αr

u than the compared non-convex models. Notice, that for all models the mean absolute error in αr
u is

Table 1. Validation losses for different moment closure
Closure M1 1D M2 1D M1 2D
Architecture non-conv. convex monotone non-conv. convex monotone convex monotone
Layout 30× 5 10× 7 30× 2 45× 4 15× 7 50× 2 18× 8 100× 3
MSE(hn, hn

θ) 1.82e−4 7.87e−7 2.09e−5 1.55e−4 1.33e−5 5.04e−4 1.10e−6 4.01e−4
MSE(αr

u, α
r
θ) 1.20e−2 7.52e−4 5.56e−6 2.17e−1 2.81e−4 2.56e−4 3.39e−5 4.54e−5

MSE(ur, ur
θ) 5.88e−4 1.47e−6 3.64e−6 5.63e−4 2.81e−4 1.27e−4 3.39e−5 8.09e−5

Lmono(u
r) n.a n.a. 1.60e−14 n.a. n.a 1.38e−14 n.a. 5.31e−16

MAE(hn, hn
θ) n.a 7.57e−4 3.05e−3 n.a 3.11e−3 1.66e−2 1.02e−3 1.49e−2

MAE(αr
u, α

r
θ) n.a 1.26e−2 9.10e−3 n.a 1.23e−2 9.74e−3 3.36e−3 4.35e−3

MAE(ur, ur
θ) n.a 9.59e−4 1.51e−3 n.a 1.23e−2 7.96e−3 9.62e−4 7.02e−3

significantly higher than the error in h or ur. The reason for this is again the high range of values, that αr
u can attain. In case

of the input convex neural network, the values are obtained by differentiating through the network with primary output hθ,
and thus one always has a scaling difference between hn and αr

u of about one order of magnitude. Therefor, the scaling
parameter λ of Eq. (80) is set to be λ = 1/10 to balance out the training.

G. Computational Efficiency
In the following, we compare the computational efficiency of the neural network surrogate model and the Newton optimizer
in an isolated, synthetic test case. We consider the M2 closure in 1D and use only normalized moments. In contrast to the
neural network, the performance of the Newton solver is dependent on the proximity of the moments un to the boundary
∂Rn, thus we consider three test cases. First, the moments are uniformly sampled in Rn, second we only draw moments
near the center of Rn and lastly, we use only moments in proximity to ∂Rn, where the minimal entropy problem is hard
to solve and has a high condition number. The Newton solver is implemented in the KiT-RT (Schotthöfer et al., 2021)
framework. In the kinetic scheme, there is one optimization problem for each grid cell in a given time step. Furthermore,
optimization problems of different grid cells are independent of each other. Options for the parallelization of the minimal
entropy closure within a kinetic solver differs, whether we choose an CPU based implementation of a Newton solver or the
GPU optimized tensorflow backend for the neural network closure. A meaningful and straight-forward way to parallelize
the minimal entropy closure on CPU is to employ one instance of the Newton optimizer per available CPU-core that handles
a batch of cells. On the other hand, we interpret the number of grid cells as the batch size of the neural network based
entropy closure. Shared memory parallelization is carried out by the tensorflow backend. For comparability, we set the
accuracy tolerance of the Newton solver to single-precision floating point accuracy, since the trained neural networks have a
validation error between O(1e−4) and O(1e−6).
We execute the neural network once on the CPU and once on the GPU using direct model execution in tensorflow. The
used CPU is a 24 thread AMD Ryzen9 3900x with 32GB memory and the GPU is a RTX3090 with 20GB memory. The
experiments are reiterated 100 times to reduce time measurement fluctuations. Table 2 displays the mean timing for each
configuration and corresponding standard deviation.
Considering Table 2, we see that the time consumption of a neural network is indeed independent of the condition of the

optimization problem, whereas the Newton solver is 6300 times slower on a on a moment un with dist(un, ∂Rn) = 0.01
compared to a moment in the interior. The average time to compute the Lagrange multiplier of a uniformly sampled moment
un is 27% higher than a moment of the interior. Reason for this is, that the Newton optimizer needs more iterations, the
more ill-conditioned the optimization problem is. In each iteration, the inverse of the Hessian must be evaluated and the
integral ⟨·⟩ must be computed using a 30 point Gauss-Legendre quadrature. One needs a comparatively high amount of
quadrature points, since the integrand m × m exp(αn

u · m) is highly nonlinear. The neural network evaluation time is
independent of the input data by construction and depends only on the neural network architecture and its size. Here we
evaluate the input convex neural network for the 1D M2 closure, whose size is determined by Table 1. The timings for the
other networks are similar, since they do not differ enough in size. However, we need to take into account that the neural

Structure preserving neural networks: A case study in the entropy closure of the Boltzmann equation

Table 2. Computational cost for one iteration of the 1D solver in seconds
Newton neural closure CPU neural closure GPU

uniform, 1e3 samples 0.00648± 0.00117 s 0.00788± 0.00051 s 0.00988± 0.00476 s
uniform, 1e7 samples 5.01239± 0.01491 s 0.63321± 0.00891 s 0.03909± 0.00382 s
boundary, 1e3 samples 38.35292± 0.07901 s 0.00802± 0.00064 s 0.00974± 0.00475 s
boundary, 1e7 samples 27179.51012± 133.393 s 0.63299± 0.00853 s 0.03881± 0.00352 s
interior, 1e3 samples 0.00514± 0.00121 s 0.00875± 0.00875 s 0.00956± 0.00486 s
interior, 1e7 samples 4.24611± 0.03862 s 0.63409± 0.00867 s 0.03846± 0.00357 s

entropy closure is less accurate near ∂R as shown in Fig. 10. Furthermore, we see that the acceleration gained by usage of
the neural network surrogate model is higher in cases with more sampling data. This is apparent in the uniform and interior
sampling test cases, where the computational time increases by a factor of ≈ 73, when the data size increases by a factor of
1e4. The time consumption of the Newton solver increases by a factor of ≈ 840 in the interior sampling case, respectively
≈ 782 in the uniform sampling case. Note, that in this experiment, all data points fit into the memory of the GPU, so it can
more efficiently perform SIMD parallelization. Reason for the smaller speedup of the neural network in case of the smaller
dataset is the higher communication overhead of the parallelization relative to the workload. This indicates that the best
application case for the neural network is a very large scale simulation.

H. Synthetic test cases
In this section, we consider again the 1D M1 entropy closure, see Fig. 2, and perform accuracy tests for the input convex
and monotnonic neural network architecture. The networks are trained on a the data set generated from αr

u,1 sampled from
[−50, 50] using the discussed sampling strategy. Then, the networks are evaluated on twice as many samples in the displayed
data range un

1 ∈ [−0.99, 0.99] and αn
i ∈ [−95, 80], thus the extrapolation areas near the boundary consist of only unseen

data and the interpolation area contains at least 50% unseen data.
The relative norm errors of the predictions of both network architectures can be seen in Fig. 10. Figure 10a) compares the
input convex and monotonic network on the basis of their relative norm error in the Lagrange multiplier αr

u. Within the
intervall [−0.75, 0.75] the relative error of the input convex neural network is in O(1e−2.5) and increases by half an order
of magnitude in the extrapolation area. The relative error of the monotonic architecture displays more fluctuation with a
mean of O(1e−2). In the extrapolation area, the error of the monotonic network increases by over an order of magnitude
and is outperformed by the convex neural network. Remark, that the approximation quality declines as we approach ∂Rr,
which is expected, since the neural networks can not be trained close to the boundary and the output data αr

u and h grow
rapidly in this region.
Figure 10b) displays the relative error in the entropy prediction hθ for of the respective neural networks. The monotonic
architecture exhibits a larger relative error in h, compared to the input convex architecture. This can by explained by the fact,
that the input convex neural network directly approximates h, whereas the monotonic neural network reconstructs h using
αr
θ and uθ and thus the approximation error of both variables influence the error in h. In the extrapolation regime, one can

see a similar error increase as in Fig. 10a).
Overall, both networks do not perform well near ∂Rr, however, when we consult Fig. 10c), we see that the error in the
reconstructed moment un is below O(1e−2) for the input convex and the monotonic network, although the error in αn

u is
almost in the order of O(1e0) in this region. This shows, that the nature of the reconstruction map u = ⟨m exp(αum)⟩
mitigates the inaccuracy in αn

u to some degree. The reconstructed moments un
θ experience less relative error in the interior

of Rr than near the boundary. For the stability of the solver however, the error in the reconstructed flux ⟨vmfu⟩, which is
Lipschitz continuous in u, is the most important quantity.
All in all, both network architecture are able to approximate the entropy closure within a reasonable error margin.

I. Simulation test cases
I.1. Supplementary material for the test case: An-isotropic inflow into an isotropically scattering homogeneous

medium in 1D

To verify the significance of the following error comparison of the neural network based closures with the Newton benchmark,
we conduct a convergence analysis of the M1 and M2 cases with the used finite volume solver. Figure. 11a) compares the

Structure preserving neural networks: A case study in the entropy closure of the Boltzmann equation

a) Relative norm error of the prediction of αn
u

b) Relative norm error of the prediction of h c) Relative norm error of the reconstruction of un

Figure 10. Relative test errors of both neural network architectures for the 1D M1 closure. Distance to ∂R is 0.01

Table 3. Computational setup of the test cases
1D M1 Linesource 1D M2 Linesource 2D M1 Periodic

T (0, 0.7] (0, 0.7] (0, 10]
Time steps 8750 8750 33333
X [0, 1] [0, 1] [−1.5, 1.5]× [−1.5, 1.5]
Grid cells nx 5000 5000 20002

Quadrature Gauss-Legendre Gauss-Legendre Tensorized Gauss-Legendre
v [−1, 1] [−1, 1] [−1, 1]× [0, 2π)
Quadrature points 28 28 400
Basis Monomial Monomial Monomial
CFL number 0.4 0.4 0.4
σ 1.0 1.0 0.0
τ 0.5 0.5 0.0

Structure preserving neural networks: A case study in the entropy closure of the Boltzmann equation

a) 1D M1 closure b) 1D M2 closure

Figure 11. Comparison of the convergence rate of a first order finite volume solver with different closures. The ground truth u∗ is given
by the finest Newton based solution. The spatial cell size is denoted by ∆x.

convergence of the solution of both neural network entropy closure and Newton closed solver of the 1D M1 test case and
Fig. 11b) the corresponding solutions of the 2D M1 test case. We assume the solution of the Newton solver at final time tf
with the finest grid as the ground truth. Due to a fixed CFL number, the amount of time steps needed for each simulation
is proportional to the number of used grid cells. The plots display first order convergence for the Newton based solver as
expected. We can see in Fig. 11a), that the monotonic neural network in the 1D M1 inflow test case converges with first
order accuracy up to an error level of O(1e−2.5). For finer grid resolutions, the error in the neural network based closure
dominates the spatial discretization error. The input convex neural network exhibits similar behavior, but the error plateau is
reached at O(1e−3.5).
In Fig. 12, we see the corresponding norm errors of the M1 and M2 solution for each grid cell at final time tf . The point
wise norm error is again in the range of O(1e−3.5) in case of the input convex architecture and in the range of O(1e−2.5 in
case of the monotonic network architecture in the M1 test case. In the M2 test case, the errors do not exceed O(1e−2). An
inspection of the relative errors of these test cases is given in Fig. 13. One can spot the maximal relative error in both test
cases at x ∈ (0.7, 0.8) at final time tf . The wave front is located in this area in the an-isotropic inflow simulation and the
moments u are closest to the boundary of the realizable set ∂R.

I.2. Supplementary material for the test case: Particles in a 2D non scattering medium with periodic initial conditions

Note that due to the absent of gain and loss terms and the choice of boundary conditions, the system is closed and cannot
lose or gain particles. The M1 system is solved using again a kinetic scheme with a 2D finite volume method in space,
an explicit Euler scheme in time and a tensorized 2D Gauss-Legendre quadrature to compute the velocity integrals. The
detailed solver configuration can be found in Table 3. Analogously to the 1D test cases, we compare the Newton based
benchmark solution to the neural network based closures with the input convex and monotonic architectures. We run the
simulation until a final time tf = 10.0, which translates to 33333 time-steps.
A convergence analysis for the 2D M1 closures of both network architectures in Fig. 15 is conducted. The convergence of
the input convex neural network levels of at O(1e−3) and the convergence of the monotonic network at O(1e−2.5), which
is in line with the findings of the 1D closures. The size of the spatial grid is chosen correspondingly.
Figure 5 shows a snapshot of the flow field computed with the benchmark solver and Fig. 14 displays snapshots of the
relative error at each grid cell of the flow field at the same iteration as the benchmark solver in Fig. 5. The relative errors of
both neural networks exhibit periodic behavior and are in the range of O(10−2) or lower. Similarly to the 1D test cases, the
input convex architecture is again slightly more accurate than the monotonic counterpart.
Figure 16a) and b) display the relative norm error of both αu and the moment u of both neural network architectures at
each time step of the simulation averaged over the whole computational domain. First, one can observe that in both figures
again the relative error of the monotonic neural network is slightly bigger than the error of the input convex neural network.

Structure preserving neural networks: A case study in the entropy closure of the Boltzmann equation

a) 1D M1 closure b) 1D M2 closure

Figure 12. Norm error at individual grid points of the neural network based closure with respect to the benchmark solution at time
tf = 0.7. For readability, not every grid cell is displayed.

a) 1D M1 closure b) 1D M2 closure

Figure 13. Relative norm error at individual grid points of the neural network based closure with respect to the benchmark solution at time
tf = 0.7. For readability, not every grid cell is displayed

Structure preserving neural networks: A case study in the entropy closure of the Boltzmann equation

a) Input convex neural network b) Monotonic neural network

Figure 14. Snapshot of the relative norm error of uθ with respect to the benchmark solution in the 2D M1 test case. The colorbar indicates
the value of ∥u− uθ∥2 / ∥u∥2 at agrid cell.

Second, we can see that in the first time steps of the simulation, the error increases from O(1e−4) to O(1e−2) in case of
the moments, respectively O(1e−3) to O(1e−1.5) in case of the Lagrange multipliers. After this initial increase, the error
stays stable for the reminder of the simulation. The oscillations in the error curves stem from the periodic nature of the
system’s solution, in which the distance to ∂R of the appearing moments changes periodically as well.

Structure preserving neural networks: A case study in the entropy closure of the Boltzmann equation

Figure 15. Comparison of the convergence rate of a first order finite volume solver with different closures. The ground truth u∗ is given
by the finest Newton based solution. The spatial cell size is denoted by ∆x.

a) Relative error of uθ at each time step b) Relative error of αθ at each time step

Figure 16. Mean over the spatial grid of the relative error of uθ with respect to the benchmark solution over time. For better readability
only a fraction of the time steps are displayed.

