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Objectives

Accelerate numerical simluation of many-particle
systems described by the Boltzmann moment
equation:
• Employ convex neural networks to compute

the minimal entropy closure
• Construct a hybrid neural-network accelerated

numerical solver
• Analyze input and output space to control

neural network errors
• Create an efficient data-generator - agnostic to

specific simulation conditions

Introduction

The Boltzmann equation laid the foundation for
statistical physics, and describes the evolution of
one-particle probability density function f (t, x, v),
where {x ∈ R3, v ∈ R3} are the coordinates in
phase space, in a many-particle system

∂tf + v · ∇xf = Q(f ). (1)
The linear collision operator Q(f ) describes inter-
actions between particles and with the background
medium. The high dimensionality yields tremen-
dous challenges for large scale numerical solutions.

Figure 1:Neural network based nuclear reactor simulation (left),
accuracy of the neural entropy at a cross section (right).

Moment Equations

Moment methods eliminate the dependency of the
phase space on the velocity variable by computing
the moment hierarchy of the Boltzmann equation

∂tu + ∇x · ⟨vmf⟩ = ⟨mQ(f )⟩ , (2)
where u(t, x) is the moment vector and m(v) is a
vector of velocity dependent basis functions. The
moment system (2) requires a closure due to the ex-
istence of high-order unclosed terms in the advection
operator. The entropy closure [1],

h(u) = min
g∈Fm

⟨η(g)⟩ s.t. u = ⟨mg⟩ , (3)

with minimizer fu of Eq. (3) closes the moment sys-
tem.
Minimal entropy closures are structurally beneficial
for simulation, since they
• ensure hyperbolicity,
• dissipate physical entropy,
• conserve physical quantities, e.g. mass,
• ensure stability of the simulation.

Neural Entropy Closures

By the strong duality of the minimal entropy prob-
lem, we write at the optimal point (u, αu) for the
Lagrange multiplier αu

h(u) = αu · u − ⟨η∗(αu · m)⟩ . (4)
Approximate this convex data-to-solution mapping
by a input convex neural network Nθ [2]

h(u) ≈ Nθ(u), αu ≈ ∂uNθ(u). (5)
Close the equation with a reconstruction mapping

fu = η′
∗(αu · m). (6)

Figure 2:Interface of the neural network with the kinetic solver.

Important Result

Convex neural networks yield a structure preserving and efficient closure for complex moment systems.
Simulation time can be reduced by over 87%, while accuracy is maintained. Convexity of the neural
network and the data-space is leveraged to create an error-bound obeying sampling strategy.

The Challenge

Equation (3) is a convex, ill-conditioned non-linear
optimization problem and has to be solved in each
grid cell at each time step of a simulation.
Over 90% of the computational expense of the solver
is spent on the entropy closure.

Timings

Table 1:Timings of the Newton based benchmark and the neu-
ral network entropy based solver.

compute cores Newton [s] Nθ [s] Ratio [%]
4 757.88 80.81 89.33
12 258.64 33.60 87.01

Data Sampling

The set of all moments corresponding to kinetic den-
sities f > 0 is called the realizable set

R = {u : ⟨mf⟩ = u, f ∈ Fm} . (7)
This gives full analytic control of the data and solu-
tion space.

Figure 3:Entropy over the moment space (left) and Lagrange
multiplier space (right).

Use convexity of the network and the data-space, as
well as normalization to construct an interpolation
error bound depending on the training data UT

∥αu − ∂uNθ(u)∥ ≤ ϵ(UT ). (8)

References

[1] C. David Levermore.
Entropy-based moment closures for kinetic equations.

[2] Brandon Amos, Lei Xu, and J. Zico Kolter.
Input convex neural networks.

Code: https://github.com/ScSteffen/neuralEntropyClosures
Code: https://github.com/CSMMLab/KiT-RT
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