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 A B S T R A C T

Understanding the quasi-static fracture formation and evolution is essential for assessing the 
mechanical properties and structural load-bearing capacity of materials. Peridynamics (PD) 
provides an effective computational method to depict fracture mechanics. The explicit adaptive 
dynamic relaxation (ADR) method and the implicit methods are two mainstream PD approaches 
to simulate evolution of quasi-static fractures. However, no comprehensive and quantitative 
studies have been reported to compare their accuracy and efficiency. In this work, we first 
develop an implicit method for bond-based peridynamics (BBPD) based on the full nonlinear 
equilibrium equation and the degenerate form of the bond failure function, where the Jacobian 
matrices are derived using the Newton–Raphson (NR) scheme. Subsequently, we analyze the 
solvability of the implicit BBPD scheme. Second, a consistent and comprehensive comparison 
of accuracy and efficiency of the explicit ADR and implicit methods is conducted, which reveals 
computational efficiency of the implicit methods and their limitations in accurately describing 
crack formation. Finally, by utilizing the unique advantage of both methods, we develop an 
adaptive explicit–implicit method and propose a switching criterion to deploy appropriate 
scheme accordingly. Four typical quasi-static problems are employed as the numerical exper-
iments, which show the acceleration ratios of the current method range from 6.4 to 141.7 
when compared to the explicit ADR. Therefore, the explicit–implicit adaptive method provides 
a powerful method to simulate quasi-static fracture formation and evolution.

. Introduction

Peridynamics (PD) offers an alternative method for modeling and simulation of fracture behavior [1–7], which has made rapid 
rogress in the recent years. Unlike classical continuum mechanics (CCM) that relies on differential operators, PD models the 
volution of materials using non-local interactions between the material points within a finite distance. Thus, it naturally mitigates 
he well-posedness issue of the derivatives appearing at cracks and voids. Both continuous and discontinuous fields can be solved 
ithin the same framework, where cumbersome remedial techniques are not required [8–18]. Based on modeling of non-local 
nteractions, PD can be divided into two categories, i.e., bond-based PD (BBPD) and state-based PD (SBPD) methods. It is worth 
entioning that there is a special type of PD model, dual-horizon peridynamics (DH-PD). By introducing the dual horizon concept, 
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 Nomenclature
 Symbols Physical quantities, units  
 𝐱 Position vector before deformation, unit: m  
 𝐲 Position vector after deformation, unit: m  
 𝐮, 𝐮̈ Displacement vector, unit: m, acceleration vector, unit: m/s2  
 𝜉, 𝜂 Relative position vector, relative displacement vector, unit : m  
 𝐟 (𝐮′ − 𝐮, 𝐱′ − 𝐱, 𝑡) Interaction force density vector between the particles at 𝐱′ and 𝐱 at the time 𝑡, unit: 

N/m3
 

 𝐅(𝜉,𝐮) Set of the total interaction force density vectors acting on each PD point in the 
entire material, unit: N/m3

 

 𝐛 Volumetric body force density vector, unit: N/m3  
 𝑐 Bond constant, unit: Pa/m4  
 𝑠 Bond stretch  
 𝜌 Density, unit: Kg/m3  
 𝐸 Young’s modulus, unit: Pa  
 𝑁 Total number of particles in the computed materials  
 𝑁𝑖 Number of particles within the horizon 𝐻𝑖  
 𝛥𝐮𝑚 Displacement increment vector, unit: m  
 𝐊 Jacobian matrix  
 𝑒 Relative error tolerance of the NR procedure  
 𝑒0 Relative error tolerance of the whole-field displacement  
 𝑆 Sparsity index  
 𝛥𝑥 Spatial discretization size, unit: m  
 𝑇𝑠 Degradation function  
 𝑠𝑚 Minimum bond stretch for bond interaction degradation  
 𝑠𝑐 Critical bond stretch  
 𝑙, 𝑤, ℎ Length, width, height, unit: m  
 𝛥𝑢𝑖 Displacement loading increments for the implicit scheme, unit: m  
 𝛥𝑢𝑒 Displacement loading increments for the explicit scheme, unit: m  
 𝑢𝑡𝑜𝑡𝑎𝑙 Total displacement loading, unit: m  
 𝑁𝑖 Total implicit loading steps to reach the total displacement  
 𝑁𝑒 Total explicit loading steps to reach the total displacement  
 𝑟𝑎 Acceleration ratio of the adaptive method in comparison to the explicit-ADR 

method
 

 𝑟𝑛 Ratio of the duration of the deformation stage to the total simulation duration  

it has a varying horizon size to resolve the ‘‘ghost force’’ issue, and enables the adaptive refinement method [19,20]. The PD in 
DH-PD framework can also be classified into BBPD and SBPD.

BBPD models the interaction between material points as the force of equal magnitude pointing to the opposite directions along 
the interaction direction [9]. Despite the limitation of fixed Poisson’s ratio, BBPD models are widely used in the modeling of brittle 
materials due to the favorable numerical stability, succinct mathematical form and low computational cost, and effectiveness in 
addressing multi-physical coupling problems [21–37]. Therefore, this study will focus on the BBPD, and may be extended to SBPD 
in the future.

Quasi-static problems are vital in the study of engineering structural deformation, subsurface movement and deformation, 
material performance testing, and loading assessment [38–45]. Although PD has been successfully applied to simulate dynamic 
fracture propagation [40,41,43,46–48], obtaining steady-state solutions under quasi-static conditions remains challenging [38]. This 
difficulty arises due to the fact that the small time step employed in the explicit time integrators leads to overwhelmingly-costly 
computation. To address this issue, Kilic et al. [38] extended the adaptive dynamic relaxation (ADR) method to PD simulation, 
where the damping coefficient in dynamic relaxation was estimated using Rayleigh’s quotient to effectively dampen the system 
from higher frequency modes to lower frequency modes. This explicit-ADR method can achieve steady-state solutions under quasi-
static conditions and accurately capture fracture propagation. However, small loading rates are necessary to avoid nonphysical force 
fluctuations caused by dynamic effects.

On the other hand, the implicit PD schemes have been proposed for static or quasi-static problems [39,49–55], which allow 
larger loading steps, faster convergence, and guaranteed equilibrium conditions. Among others, Breitenfeld et al. [55] presented 
the development of a static implementation for the non-ordinary state-based PD (NOSBPD) formulation, focusing on small-strain 
linearly elastic problems. Ni et al. [52] proposed an implicit form of the finite element method (FEM)-BBPD coupled model to 
address static fracture problems and introduced three methods to compute crack propagation, i.e., allowing only one bond to break 
per step, no control of bond breakage, and limiting the maximum number of bonds that can break at each step. It turned out that 
2 
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the third method significantly improved the accuracy of numerical solution. The linearized equilibrium equation was used in that 
model under the small displacement assumption [1,56]. Gu et al. [37] also applied such linearized equilibrium equation of BBPD 
within their framework to study porous quasi-brittle materials . If the linearized PD equation is used, small loading increments are 
required to ensure that the displacements remain sufficiently small at each step to satisfy the prerequisite for linearization, i.e., small 
deformation.

To remove the small deformation restriction, the full nonlinear form of PD is favored in conjunction with iterative schemes such 
as the Newton–Raphson (NR). However, the three mainstream crack computation methods discussed above are not suitable for the 
NR procedure due to the fact that, when there are cracks, the force field becomes discontinuous, making it difficult to obtain the 
Jacobian matrix. Hashim et al. [50] proposed an implicit NOSBPD framework using the NR scheme, where a degradation function is 
introduced to describe damage evolution, i.e., the interaction degradation of the bond as the bond stretch increases, which is different 
from immediate disappearance of the bond influence. Yang et al. [49] improved the implicit NOSBPD model by incorporating a 
stress-based criterion to evaluate bond failure, which overcame the difficulties associated with obtaining fracture properties in the 
previous critical stretch criterion. While the implicit schemes for NOSBPD have been studied, the detailed implementation for BBPD, 
which is equally crucial, has not garnered adequate attention yet. Also, since implicit methods aim to reduce computational costs, 
it is necessary to compare the computational efficiency between the explicit-ADR and implicit schemes for quasi-static problems, 
which has not been systematically examined.

Here, we first develop an implicit method based on the full nonlinear equilibrium equation and the degenerate form of the bond 
failure function of BBPD for quasi-static problems. The Jacobian matrix is obtained using the NR scheme, which lays the foundation 
for the implicit scheme. We thoroughly compare the computational efficiency and accuracy of the explicit-ADR method and the 
newly-developed implicit method. Leveraging the advantages of both methods, we propose an explicit–implicit adaptive method 
that strikes a balance between accuracy and efficiency for quasi-static fracture problems. The performance of the adaptive method 
will be elaborated for four quasi-static problems.

Note that although implicit schemes were reported in the literature [37,49,50,52,55], the novel contributions of this work lie in 
two key aspects. First, the nonlinear form of the BBPD equation is retained to eliminate the small-strain restriction often encountered 
in BBPD studies [1,37,38,52,53,56]. More importantly, this study presents the first comprehensive comparison of two mainstream 
methods, i.e., the explicit ADR and implicit schemes, for quasi-static problems. Based on this comparison, a new adaptive scheme 
is proposed that effectively combines the advantages of both approaches. Additionally, the current efficient adaptive scheme is also 
applicable to SBPD.

The rest of the paper is organized as follows. Section 2 introduces BBPD and presents a new implicit model for quasi-static 
problems. Section 3 provides a comprehensive comparison between the explicit-ADR method and the newly-developed implicit 
method. Section 4 details a novel explicit–implicit adaptive method tailored for quasi-static fracture problems. Following this, 
Section 5 highlights four typical case studies, revealing the computational accuracy and efficiency of the explicit–implicit adaptive 
method. The conclusions and further discussion on the remaining issues are presented in the last section.

2. Theoretical model

In this section, we formulate a new implicit BBPD method for quasi-static problems. The nonlinear equilibrium equation is 
analyzed by examining the properties of the Jacobian matrix, and the degradation of bond damage is illustrated.

2.1. Implicit formulation of full nonlinear BBPD model

The equation of motion of BBPD is given by 

𝜌(𝐱)𝐮̈(𝐱, 𝑡) = ∫𝐻
𝐟 (𝐮′ − 𝐮, 𝐱′ − 𝐱, 𝑡)𝑑𝐻 + 𝐛(𝐱, 𝑡), (1)

where 𝐻 represents the horizon zone of the particle at the position 𝐱, 𝐟 (𝐮′ − 𝐮, 𝐱′ − 𝐱, 𝑡) is the force density vector between the 
particles at 𝐱′ and 𝐱, both at the time 𝑡, (𝐱′ − 𝐱) represents the initial relative position vector between the particles at 𝐱′ and 𝐱 in 
the horizon 𝐻 , 𝐛 is the body force density vector at the time 𝑡, 𝜌(𝐱) presents the mass density of the particle at 𝐱, and 𝐮̈ is the 
second-order time derivative of displacement 𝐮.

The initial relative position vector ξ and relative displacement vector η are denoted by ξ = 𝐱′ − 𝐱 and η = 𝐮′ − 𝐮, where 𝐮′
and 𝐮 are, respectively, the displacement of the particles at 𝐱′ and 𝐱. After the configuration deformation, the new positions of the 
particles at 𝐱′ and 𝐱 are represented by 𝐲′ and 𝐲, where 𝐲′ = 𝐱′ + 𝐮′ and 𝐲 = 𝐱 + 𝐮. The relative positional relationship between the 
particles 𝐱 and 𝐱′ is depicted in Fig.  1.

The PD integral-form equation can be discretized for numerical implementation as 

𝜌(𝐱𝑖)𝐮̈(𝐱𝑖, 𝑡) =
𝑁𝑖
∑

𝑗=1
[𝐟𝑖,𝑗 (𝐮𝑗 − 𝐮𝑖, 𝐱𝑗 − 𝐱𝑖, 𝑡)𝜇𝑖,𝑗𝜈𝑖,𝑗𝑉𝑗 ] + 𝐛(𝐱𝑖, 𝑡), (2)

where 𝑁𝑖 represents the number of particles within the horizon of the particle located at 𝐱𝑖. The subscript 𝑗 denotes an arbitrary 
particle positioned at 𝐱𝑗 within the horizon of the particle at 𝐱𝑖. 𝑉𝑗 is the volume of the particle at 𝐱𝑗 within the horizon of the 
particle at 𝐱𝑖, given by 𝑉𝑗 = (𝛥𝑥)3 for a uniform discretization. Here, 𝜈𝑖,𝑗 and 𝜇𝑖,𝑗 are the volume and surface effect correction factors 
for the particle at 𝐱  within the horizon of the particle at 𝐱 , respectively, and 𝛥𝑥 represents the particle spacing.
𝑗 𝑖
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Fig. 1. Illustration of BBPD and pairwise interaction between PD points. The horizon of the particle at the position 𝐱 encompasses all the PD particles interacting 
with it, and remains unchanged throughout deformation.

Based on the BBPD theory, the force density vector of each bond 𝐟𝑖,𝑗 satisfies 

𝐟𝑖,𝑗 (𝐮𝑗 − 𝐮𝑖, 𝐱𝑗 − 𝐱𝑖, 𝑡) = 𝑐𝑠
ξ𝑖𝑗 + η𝑖𝑗
|

|

|

ξ𝑖𝑗 + η𝑖𝑗
|

|

|

= 𝑐
|

|

|

ξ𝑖𝑗 + η𝑖𝑗
|

|

|

− |

|

|

ξ𝑖𝑗
|

|

|

|

|

|

ξ𝑖𝑗
|

|

|

ξ𝑖𝑗 + η𝑖𝑗
|

|

|

ξ𝑖𝑗 + η𝑖𝑗
|

|

|

= 𝑐
|

|

|

𝐲𝑗 − 𝐲𝑖
|

|

|

− |

|

|

𝐱𝑗 − 𝐱𝑖
|

|

|

|

|

|

𝐱𝑗 − 𝐱𝑖
|

|

|

𝐲𝑗 − 𝐲𝑖
|

|

|

𝐲𝑗 − 𝐲𝑖
|

|

|

,

(3)

where 𝑐 is bond constant,

𝑐 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

2𝐸
𝜋𝛿2𝐴

for  1D,
9𝐸
𝜋𝛿3ℎ

for  plane stress,
48𝐸
5𝜋𝛿3ℎ for  plane strain,
12𝐸
𝜋𝛿4

for  3D,

and 𝑠 is the bond stretch, which is 𝑠 =
(

|

|

|

ξ𝑖𝑗 + η𝑖𝑗
|

|

|

− |

|

|

ξ𝑖𝑗
|

|

|

)

∕||
|

ξ𝑖𝑗
|

|

|

.
For the quasi-static deformation, the second-order time derivative of displacement can be ignored, the governing equation of 

BB-PD is given below, 
𝑁𝑖
∑

𝑗=1
𝑐
|

|

|

ξ𝑖𝑗 + η𝑖𝑗
|

|

|

− |

|

|

ξ𝑖𝑗
|

|

|

|

|

|

ξ𝑖𝑗
|

|

|

ξ𝑖𝑗 + η𝑖𝑗
|

|

|

ξ𝑖𝑗 + η𝑖𝑗
|

|

|

𝜇𝑖,𝑗𝜈𝑖,𝑗𝑉𝑗 + 𝐛
(

𝐱𝑖, 𝑡
)

= 𝟎. (4)

We propose an implicit algorithm to solve the quasi-static motion equation, thereby avoiding the significant computational 
cost associated with excessively small time steps required in the explicit time integration. Moreover, the NR scheme is applied to 
iteratively solve the aforementioned full nonlinear equation.

The function 𝐄(𝐮) is defined as 𝐄(𝐮) = 𝐅(ξ,𝐮) +𝐛(𝐱), where the function 𝐅 represents the set of the total interaction force density 
vectors acting on each PD point in the entire material. For the PD point located at 𝐱𝑖, one element of 𝐅, the total interaction force 
density vector at 𝐱𝑖, can be expressed as:

𝐅𝑖(ξ,𝐮) =
𝑁𝑖
∑

𝑗=1
𝑐
|ξ𝑖𝑗 + η𝑖𝑗 | − |ξ𝑖𝑗 |

|ξ𝑖𝑗 |

ξ𝑖𝑗 + η𝑖𝑗
|ξ𝑖𝑗 + η𝑖𝑗 |

𝜇𝑖,𝑗𝜈𝑖,𝑗𝑉𝑗 .

The system reaches equilibrium when the value of 𝐄(𝐮) approaches zero.
According to the NR iteration scheme shown in Fig.  2, expand the function 𝐄(𝐮) at 𝐮𝑚 using the Taylor series and retain the linear 

term yields 𝐄 𝐮 ≈ 𝐄
(

𝐮
)

+ 𝜕𝐄 (𝐮 )
(

𝐮 − 𝐮
)

, where 𝐮  represents the displacement of the current 𝑚 iteration step. The solution to 
( ) 𝑚 𝜕𝐮 𝑚 𝑚 𝑚
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Fig. 2. Illustration of the NR procedure: the solution of a nonlinear system equals the zero point of the nonlinear function, and the numerical solution obtained 
through the NR iteration gradually converges toward the accurate solution.

the nonlinear system 𝐄(𝐮) = 𝟎 can be transformed into solving the following linear equation at each iteration step, 

𝐊𝑚
(

𝛥𝐮𝑚
)

= −𝐄
(

𝐮𝑚
)

,𝐊𝑚 = 𝜕𝐄
𝜕𝐮

(𝐮𝑚), (5)

where 𝐊𝑚 is the Jacobian matrix (or tangent stiffness matrix) at the 𝑚th iteration, and 𝛥𝐮𝑚 = 𝐮𝑚+1−𝐮𝑚 is the unknown displacement 
increment. Once 𝛥𝐮𝑚 is determined, the next displacement 𝐮𝑚+1 is updated as 𝐮𝑚+1 = 𝐮𝑚+𝛥𝐮𝑚. This iterative process continues until 
𝐮𝑚+1 converges to the required accuracy.

Although 𝐊𝑚 can be determined numerically [54], the calculation involves finite differencing of the whole-field function 𝐄(𝐮)
with respect to the displacements of all PD points (as shown in Eq. (5)), resulting in significant computational and memory costs. 
Furthermore, 𝐊𝑚 changes with each iteration, solving it numerically becomes increasingly expensive. To reduce the computational 
cost, the analytical expression of 𝐊 can be obtained as, 

𝐊 = 𝜕𝐄
𝜕𝐮

=
𝜕𝐅

(

ξ,𝐮
)

𝜕𝐮
=

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜕𝐅1
(

ξ,𝐮
)

𝜕𝐮1
𝜕𝐅1

(

ξ,𝐮
)

𝜕𝐮2
⋯

𝜕𝐅1
(

ξ,𝐮
)

𝜕𝐮𝑛
𝜕𝐅2

(

ξ,𝐮
)

𝜕𝐮1
𝜕𝐅2

(

ξ,𝐮
)

𝜕𝐮2
⋯

𝜕𝐅2
(

ξ,𝐮
)

𝜕𝐮𝑁
⋮ ⋮ ⋱ ⋮

𝜕𝐅𝑁
(

ξ,𝐮
)

𝜕𝐮1
𝜕𝐅𝑁

(

ξ,𝐮
)

𝜕𝐮2
⋯

𝜕𝐅𝑁
(

ξ,𝐮
)

𝜕𝐮𝑁

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦𝑁×𝑁

, (6)

where 𝐊 represents the Jacobian matrix function at arbitrary time and 𝑁 represents the total number of particles of the material. 
For three dimensions, the 3 × 3 matrix is given by 

𝜕𝐅𝑖
(

ξ,𝐮
)

𝜕𝐮𝑗
=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝜕𝐹𝑖𝑥
(

ξ,𝐮
)

𝜕𝑢𝑗𝑥

𝜕𝐹𝑖𝑥
(

ξ,𝐮
)

𝜕𝑢𝑗𝑦

𝜕𝐹𝑖𝑥
(

ξ,𝐮
)

𝜕𝑢𝑗𝑧
𝜕𝐹𝑖𝑦

(

ξ,𝐮
)

𝜕𝑢𝑗𝑥

𝜕𝐹𝑖𝑦
(

ξ,𝐮
)

𝜕𝑢𝑗𝑦

𝜕𝐹𝑖𝑦
(

ξ,𝐮
)

𝜕𝑢𝑗𝑧
𝜕𝐹𝑖𝑧

(

ξ,𝐮
)

𝜕𝑢𝑗𝑥

𝜕𝐹𝑖𝑧
(

ξ,𝐮
)

𝜕𝑢𝑗𝑦

𝜕𝐹𝑖𝑧
(

ξ,𝐮
)

𝜕𝑢𝑗𝑧

⎤

⎥

⎥

⎥

⎥

⎥

⎦

3×3

, (7)

where the subscript 𝑥, 𝑦, and 𝑧 represent three mutually orthogonal Cartesian coordinate components, respectively.
If we substitute Eq. (7) into Eq. (6) for 𝑗 ≠ 𝑖, and the particle at the position 𝐱𝑗 belongs to the horizon of the particle at the 

position 𝐱𝑖, i.e., 𝐱𝑗 ∈ 𝐻𝑖, we obtain 

𝜕𝐹𝑖𝑝
(

ξ,𝐮
)

𝜕𝑢𝑗𝑞
= 𝑐𝜇𝑖,𝑗𝜈𝑖,𝑗𝑉𝑗

⎡

⎢

⎢

⎢

𝛿𝑝𝑞
|

|𝐱𝑗 − 𝐱𝑖
|

|

−
𝛿𝑝𝑞

|

|𝐲𝑗 − 𝐲𝑖
|

|

+

(

𝑦𝑗𝑝 − 𝑦𝑖𝑝
) (

𝑦𝑗𝑞 − 𝑦𝑖𝑞
)

|

|𝐲 − 𝐲 |

|

3

⎤

⎥

⎥

⎥

, (8)
⎣

| | | |

|

𝑗 𝑖
|

⎦

5 



S. Hu et al. Engineering Fracture Mechanics 320 (2025) 111046 
where the subscripts 𝑖 and 𝑗 represent the coordinate indices (𝑖, 𝑗 = 1, 2,… , 𝑁), and 𝑝 and 𝑞 denote the indices for the orthogonal 
component directions of the position vectors (𝑝, 𝑞 = 𝑥, 𝑦, 𝑧). For example, 𝑦𝑗𝑝 represents the position coordinate component of particle 
𝑗 in the 𝑝 direction after deformation. 𝛿𝑝𝑞 = 1 when 𝑝 = 𝑞, and 𝛿𝑝𝑞 = 0 otherwise.

If 𝑗 ≠ 𝑖 and the particle at the position 𝐱𝑗 does not belong to the horizon of the particle at the position 𝐱𝑖,i.e., 𝐱𝑗 ∉ 𝐻𝑖, we can 
obtain 

𝜕𝐅𝑖
(

ξ,𝐮
)

𝜕𝐮𝑗
= 𝟎. (9)

If 𝑗 = 𝑖, similarly, we obtain 
𝜕𝐹𝑖𝑝

(

ξ,𝐮
)

𝜕𝑢𝑖𝑞
= 𝑐

∑

𝐱𝑘∈𝐻𝑖

[

𝛿𝑝𝑞
|

|

𝐲𝑘 − 𝐲𝑖||
−

𝛿𝑝𝑞
|

|

𝐱𝑘 − 𝐱𝑖||
−

(

𝑦𝑘𝑝 − 𝑦𝑖𝑝
) (

𝑦𝑘𝑞 − 𝑦𝑖𝑞
)

|

|

𝐲𝑘 − 𝐲𝑖||
3

]

𝜇𝑖,𝑘𝜈𝑖,𝑘𝑉𝑘, (10)

where the subscript 𝑘 represents the coordinate indices, and 𝑘 = 1, 2,… , 𝑁 .
In summary, the dimension of Jacobian matrix 𝐊 is 𝑚𝑁 × 𝑚𝑁 , where 𝑚 represents the dimension of the system ranging from 1 

to 3. Each element of the Jacobian matrix 𝐊 can be calculated by Eqs. (6)–(10).
In the same manner, the right-hand side of Eq. (5), which is a 𝑚𝑁 × 1 vector, can be calculated by 

−𝐸
(

𝑢𝑖𝑝
)

= 𝑐
∑

𝐱𝑘∈𝐻𝑖

[(

𝑦𝑘𝑝 − 𝑦𝑖𝑝
)

|

|

𝐲𝑘 − 𝐲𝑖||
−

(

𝑦𝑘𝑝 − 𝑦𝑖𝑝
)

|

|

𝐱𝑘 − 𝐱𝑖||

]

𝜇𝑖,𝑘𝜈𝑖,𝑘𝑉𝑘 − 𝑏𝑖𝑝,

(𝑖, 𝑘 = 1, 2…𝑁 ; 𝑝, 𝑞 = 𝑥, 𝑦, 𝑧) .

(11)

By solving the linear system, 𝛥𝐮𝑚 can be obtained, and the displacement of the next step is 𝐮𝑚+1 = 𝐮𝑚 + 𝛥𝐮𝑚. The convergence 
criterion of the NR procedure is set as 

‖

‖

‖

𝐄
(

𝐮𝑚+1
)

‖

‖

‖2
‖

‖

‖

𝐛
(

ξ
)

‖

‖

‖2

≤ 𝑒, where 𝑒 stands for the relative error tolerance.

2.2. Properties of Jacobian matrix for implicit BBPD model

The typical Jacobian matrix of BBPD for quasi-static problems exhibits the following properties.
(1) Sparsity: the number of non-zero elements in 𝐊 is associated with the total number of particles in a horizon. The sparsity 

index 𝑆 can be calculated as 𝑆 =
∑𝑁

𝑖=1
(

𝑁𝑖 + 1
)

∕𝑁2, where (𝑁𝑖+1) represents the total number of particles in the horizon of particle 
𝑖, including itself. Furthermore, not all horizons contain the same number of particles due to the presence of surfaces, so 𝑆 < 𝑁𝑚+1

𝑁 , 
where 𝑁𝑚 is the maximum number of localized particles, which is typically constant in PD simulations. As the horizon size is 
commonly set to be 3𝛥𝑥, the value of 𝑁𝑚 is typically equal to 3 for 1-dimensional (1D) problems, 28 for 2D problems, and 122 for 
3D problems. Therefore, 𝐾 is sparse as 𝑁 ≫ 𝑁𝑚.

(2) Symmetry: if we take the 3D Jacobian matrix 𝐊 as an example, each element of 𝐊3𝑁×3𝑁  can be expressed as [K𝑖,𝑗 ]𝑝,𝑞 , where 
𝑖 and 𝑗 represent the index numbers of all the particles, and 𝑝 and 𝑞 represent the axis components of the Cartesian coordinate.

If 𝑗 ≠ 𝑖, from Eq. (8), we obtain

[

𝐾𝑖,𝑗
]

𝑝,𝑞 = 𝑐𝜇𝑖,𝑗𝜈𝑖,𝑗𝑉𝑗

⎡

⎢

⎢

⎢

⎣

𝛿𝑝𝑞
|

|

|

𝐱𝑗 − 𝐱𝑖
|

|

|

−
𝛿𝑝𝑞

|

|

|

𝐲𝑗 − 𝐲𝑖
|

|

|

+

(

𝑦𝑗𝑝 − 𝑦𝑖𝑝
) (

𝑦𝑗𝑞 − 𝑦𝑖𝑞
)

|

|

|

𝐲𝑗 − 𝐲𝑖
|

|

|

3

⎤

⎥

⎥

⎥

⎦

,

[

𝐾𝑗,𝑖
]

𝑞,𝑝 = 𝑐𝜇𝑖,𝑗𝜈𝑖,𝑗𝑉𝑖

⎡

⎢

⎢

⎢

⎣

𝛿𝑝𝑞
|

|

|

𝐱𝑖 − 𝐱𝑗
|

|

|

−
𝛿𝑝𝑞

|

|

|

𝐲𝑖 − 𝐲𝑗
|

|

|

+

(

𝑦𝑖𝑞 − 𝑦𝑗𝑞
) (

𝑦𝑖𝑝 − 𝑦𝑗𝑝
)

|

|

|

𝐲𝑖 − 𝐲𝑗
|

|

|

3

⎤

⎥

⎥

⎥

⎦

.

In PD simulations, the grids are usually uniform, which mean 𝑉𝑗 = 𝑉𝑖, so that, [K𝑖,𝑗 ]𝑝,𝑞 = [K𝑗,𝑖]𝑞,𝑝. If 𝑗 = 𝑖, the elements are on the 
diagonal of a square matrix, so [K𝑖,𝑖]𝑝,𝑞 = [K𝑖,𝑖]𝑞,𝑝. Therefore, 𝐊 is a symmetric matrix.

(3) Other important property: as for the diagonal elements of the particle index matrix [𝐾𝑖,𝑖], the arbitrary Cartesian coordinate 
components [𝐾𝑖,𝑖]𝑝,𝑞 can be expressed as Eq. (10), and we get 

[

𝐾𝑖,𝑖
]

𝑝,𝑞 = −
∑𝑁𝑖

𝑗=1
[

𝐾𝑖,𝑗
]

𝑝,𝑞 . This implies that 𝐊 is a matrix with the 
row sum equal to 0. Therefore, 𝐊 is singular and requires the introduction of boundary condition to eliminate singularity.

To be more illustrative, we compute a specific Jacobian matrix for a particular quasi-static case before applying boundary 
conditions. This case involves a 2D bar subjected to a transverse loading, which will be discussed in Section 3.1. Fig.  3 displays the 
distribution of non-zero elements in this Jacobian matrix. As for the positive definiteness of the Jacobian matrix, the theoretical 
proof is yet to be found while the numerical verification has been accomplished.

2.3. Boundary condition

The Jacobian matrix 𝐊 may become singular due to the presence of rigid body displacement. In order to address this singularity, 
displacement constraints need to be applied. In PD simulations, a displacement boundary condition is enforced by imposing 
constraints on the displacement or velocity field within a fictitious material layer along the boundary of a non-zero volume. As 
the displacement of the materials points in the fictitious layer is known, the rows and columns corresponding to the material points 
6 
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Fig. 3. Distribution of non-zero elements in the stiffness matrix shows the unique sparse band-like characteristics.

in the fictitious layer should be removed from the Jacobian matrix. Therefore, the row sums are no longer zero, and the singularity 
of 𝐊 is eliminated, which is shown in Fig.  4.

When applying the force boundary conditions, the external force is presented in the PD governing equation in the form of 
body force density vector, i.e., 𝐛(𝐱, 𝑡) in Eq. (1). In the implicit equation, it is reflected in the 𝑏𝑖𝑝 term in Eq. (11), where the 
subscript 𝑝 = 𝑥, 𝑦, 𝑧. When force boundary conditions exist, for the PD point 𝑖 where the force vector 𝐏𝑖 = (𝑇𝑥, 𝑇𝑦, 𝑇𝑧) is applied, the 
corresponding 𝑏𝑖𝑥 = 𝑇𝑥∕(𝑠𝛥𝑥), where 𝑠 is the surface area of the force boundary layer. Similarly, 𝑏𝑖𝑦 = 𝑇𝑦∕(𝑠𝛥𝑥), and 𝑏𝑖𝑧 = 𝑇𝑧∕(𝑠𝛥𝑥). 
For all other PD points, 𝑏𝑖𝑝 = 0.

2.4. Damage evolution

A critical bond stretch is used to describe the damage evolution in the material. When the bond stretch exceeds this critical 
value, bonds begin to break, cracks start to form, and the interaction forces between the bonds are then set to zero. However, 
it is important to note that directly setting the forces to zero may adversely affect numerical convergence in the present implicit 
procedure. The current implicit format is based on the NR scheme, and the differentiation of forces with respect to displacement 
necessitates the continuity of forces. Hence, the continuous degradation function 𝑇𝑠 is utilized to depict the deterioration of bond 
interaction as the bond stretch increases, which is shown below: 

𝑇𝑠 =

⎧

⎪

⎨

⎪

⎩

1
(

𝑠 ≤ 𝑠𝑚
)

1
2

[

1 − tanh 𝛽
(

𝑠𝑚+𝑠𝑐−2𝑠
)

𝑠𝑚−𝑠𝑐

]

(

𝑠𝑚 < 𝑠 < 𝑠𝑐
)

0
(

𝑠 ≥ 𝑠𝑐
)

,

(12)

where 𝑠𝑚 is the minimum bond stretch at which the degradation of bond interaction begins, 𝑠𝑐 is the critical bond stretch, and 𝛽 is 
a non-negative value that controls the rate of degradation [50].

The new total interaction force density vector of the particle at 𝐱𝑖, taking into account the damage, is given by the following 
equation: 

𝐅𝑖
(

ξ𝑖𝑗 ,𝐮𝑖𝑗
)

=
𝑁𝑖
∑

𝑗=1
𝑐𝑠
ξ𝑖𝑗 + η𝑖𝑗
|

|

|

ξ𝑖𝑗 + η𝑖𝑗
|

|

|

𝑇𝑠𝜇𝑖,𝑗𝜈𝑖,𝑗𝑉𝑗 . (13)

By conducting the NR procedure, the elements of new Jacobian matrix 𝐊 can be calculated by 
𝜕𝐹𝑖𝑝(ξ,𝐮)

𝜕𝑢𝑗𝑞
= 𝑇𝑠𝑃𝑖,𝑗𝐴𝑖𝑗𝑝𝑞 + 𝑃𝑖,𝑗

(

𝑇𝑠𝐶𝑖𝑗 + 𝐿𝑖𝑗𝐵𝑖𝑗𝐴𝑖𝑗𝑝𝑞
)

𝐷𝑖𝑗𝑝𝑞 , (14)

(𝑖, 𝑗 = 1, 2,… , 𝑁, 𝑖 ≠ 𝑗; 𝑝, 𝑞 = 𝑥, 𝑦, 𝑧) ,

7 
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Fig. 4. Illustration of applying the boundary condition for a 2D bar under a transverse loading, similar to the scenario depicted in Fig.  6. The boundary condition 
involves fixing the left side of bar.

and 
𝜕𝐹𝑖𝑝

(

ξ,𝐮
)

𝜕𝑢𝑖𝑞
= −

∑

𝐱𝑗∈𝐻𝑖

[

𝑇𝑠𝑃𝑖,𝑗𝐴𝑖𝑗𝑝𝑞 + 𝑃𝑖,𝑗
(

𝑇𝑠𝐶𝑖𝑗 + 𝐿𝑖𝑗𝐵𝑖𝑗𝐴𝑖𝑗
)

𝐷𝑖𝑗𝑝𝑞
]

,

(𝑖, 𝑗 = 1, 2,… , 𝑁 ; 𝑝, 𝑞 = 𝑥, 𝑦, 𝑧) ,

(15)

where 𝑃𝑖,𝑗 = 𝑐𝜇𝑖,𝑗𝜈𝑖,𝑗𝑉𝑗 , 𝐴𝑖𝑗𝑝𝑞 = 𝛿𝑝𝑞
|

|

|

𝐱𝑗−𝐱𝑖
|

|

|

− 𝛿𝑝𝑞
|

|

|

𝐲𝑗−𝐲𝑖
|

|

|

, 𝐵𝑖𝑗 = 1
|

|

|

𝐱𝑗−𝐱𝑖
|

|

|

|

|

|

𝐲𝑗−𝐲𝑖
|

|

|

, 𝐶𝑖𝑗 = 1
|

|

|

𝐲𝑗−𝐲𝑖
|

|

|

3  and 𝐷𝑖𝑗𝑝𝑞 =
(

𝑦𝑗𝑝 − 𝑦𝑖𝑝
) (

𝑦𝑗𝑞 − 𝑦𝑖𝑞
)

, 𝐿𝑖𝑗 =

𝛽
𝑠𝑚−𝑠𝑐

(

1 − tanh2 𝛽
(

𝑠𝑚+𝑠𝑐−2𝑠
)

𝑠𝑚−𝑠𝑐

)

.
The properties of Jacobian matrix are not affected by the degradation function 𝑇𝑠 and remain unchanged.
In summary, by introducing the degradation damage function and applying the boundary condition, the Jacobian matrix holds 

its sparse, symmetric, positive definite, and non-singular properties, indicating good solvability of the system.

3. Comparison of explicit-ADR and implicit BBPD method

The implicit scheme is often designed to reduce computational costs of PD for quasi-static problems. With the deploy of BBPD, 
which represents the simplest form of PD theory, and the implementation of conjugate gradient (CG) method, known as one of the 
simplest and most efficient iterative methods for solving linear equations, our implicit scheme is a promising method. Therefore, it 
would be persuasive to evaluate the efficiency of our implicit scheme by comparing to the explicit-ADR method.

For consistency, the whole-field displacement convergence is maintained for both the explicit-ADR and implicit schemes, as 
described below: 

𝑒𝐮 =
(

‖

‖

𝐮𝑛 − 𝐮𝑛−1‖‖2
)

∕‖
‖

𝐮𝑛−1‖‖2, 𝑒𝐮 < 𝑒0, (16)

where 𝑒𝐮 is the defined relative error of whole-field displacement at the step 𝑛, 𝑒0 is the converge criterion, 𝐮𝑛 and 𝐮𝑛−1 are the 
displacement at the steps (𝑛−1) and 𝑛, respectively. The same material properties, geometric information, discretization length, 
boundary conditions, initial loading conditions, and displacement convergence criteria are used. Additionally, the degradation 
function with the same fracture criterion is applied to describe the bond failure in both simulations. All the calculations are conducted 
using Julia [57] programming within the same computational environment, utilizing a single core of the AMD EPYC 7763 64-Core 
Processor. Subsequently, the results of damage, displacement, and CPU time for computations are compared.
8 
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Fig. 5. Convergence of the L2-norm for displacement of the bar under tension.

3.1. Deformation of 1D bar under tension

The configuration comprises a 1D bar with length 𝐿 = 1m, cross sectional area 𝐴 = 10−6m2, density 𝜌 = 7850 kg/m3, and elastic 
modulus 𝐸 = 2 × 1011 Pa. The left end (𝑥 = 0) is fixed, while a tensile force 𝐹 = 200N is applied at the right end (𝑥 = 𝐿), as 
shown in Fig.  5. The analytical displacement solution is expressed as 𝐮𝑎(𝑥) = 𝐅𝑥

𝐴𝐸 . Implicit simulations are conducted with spatial 
discretization size of 𝛥𝑥 = 1

10 ,
1

100 ,
1

500 ,
1

1000 ,
1

5000 ,
1

10000 ,
1

20000 m, respectively. The 𝐿2 - norm error is computed to quantify numerical 
deviations [58], which is defined as ‖𝐮‖𝐿2 =

√
∑

𝑗 (𝐮𝑗−𝐮𝑎𝑗 )⋅(𝐮𝑗−𝐮
𝑎
𝑗 )𝛥𝑉𝑗

∑

𝑗 𝐮𝑎𝑗 ⋅𝐮
𝑎
𝑗𝛥𝑉𝑗

. With the refinement in discretization, the numerical results 
converge to the theoretical solutions at a rate 𝑟 ≈ 1.

3.2. Deformation of undamaged 2D plate

The 2D plate has the initial length 𝑙 of 0.5 m, and the width 𝑤 of 0.05 m. It is uniformly discretized into 1030 particles using 
the regular grid 100 × 10, with a layer of fictitious thickness 3𝛥𝑥 at the fixed boundary on the left side of the bar. The horizon 
size is 3.015𝛥𝑥. The material is assumed to be isotropic and linear elastic with the Young’s modulus 𝐸 of 200 GPa and the density 
of 7850 kg/m3. The boundary and loading conditions are depicted in Fig.  6. The left end of the bar is fixed, while the right end is 
subjected to a downward vertical loading of 125 N. The loading boundary is located on the outermost layer of the right end of the 
bar, with a boundary layer volume of 10 × 1×(𝛥𝑥)3. The loading is applied from the beginning as a body force density vector to the 
PD points within the loading boundary layer, with a magnitude of 1×108 N/m3.

Both the implicit and explicit schemes adhere to the same convergence criterion as described in Eq. (16), and 𝑒0 is set to be 
1×10−9. The implicit simulation converges in only one step, while the explicit one requires approximately 20000 steps. This is 
because small loading increment is required to satisfy the small displacement assumption of the explicit-ADR method [9], leading 
to a large number of steps, whereas it is not required for the present implicit method.

No damage is allowed in this scenario. As depicted in Fig.  6, the results from the implicit simulation are identical to those 
obtained from the explicit simulations. But the implicit scheme is approximately 290 times faster than the explicit one.

3.3. Fracture of 2D plate with a hole

The 2D plate has the initial length 𝑙 of 0.15 m, and the width 𝑤 of 0.05 m. It is uniformly discretized into 7800 PD particles using 
the regular grid of 150 × 50, with two layers of fictitious thickness 3𝛥𝑥 at the displacement boundary on both the left and right 
9 
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Fig. 6. This figure illustrates the vertical displacement distribution along the horizontal central line of a 2D bar subjected to transverse loads. The results are 
obtained from the explicit-ADR and implicit simulations, respectively. The loading position is marked in red.

Fig. 7. The damage and horizontal displacement distribution of a 2D plate under horizontal tension are depicted. The left figure illustrates the results obtained 
from the explicit-ADR scheme, while the right figure displays the outcomes of the implicit scheme with different number of loading steps. It is noteworthy that 
the right figure only represents the portion enclosed within the dashed boxes of the left figure.

sides of the plate. The radius of the central hole is 0.005 m. The horizon size is 3.015𝛥𝑥. The material is assumed to be isotropic 
and linear elastic with the Young’s modulus 𝐸 of 192 GPa and the density of 8000 kg/m3. The boundary and loading conditions are 
depicted in Fig.  7. The left and right ends are subjected to the outward horizontal displacement loadings with a total magnitude of 
1.6 mm.

The convergence criterion remains the same as described in Section 3.1. Fracture evolution is taken into consideration, and both 
the implicit and explicit simulations employ the same degradation function to characterize bond damage behavior, as outlined in 
Eq. (12), with 𝑠𝑚 = 0.033, 𝑠𝑐 = 0.066, and 𝛽 = 3.

It is worth noting that in this example, the implicit simulation does not converge in one single step but requires multiple loading 
steps for convergence. For the explicit-ADR, the total displacement loading is attained by applying a small velocity at the boundary 
over an extended period. Note, the velocity here, as in [38], represents the displacement loading rate, which is the displacement 
increment in each iteration. The velocity should be small enough to avoid any dynamic effects [38]. Kilic and Madenci observed 
that compared to low loading rates, the results obtained using the explicit-ADR method at high loading rates exhibit significant 
differences and no longer adhere to the patterns observed at low loading rates. The dynamic effects originate actually from the 
assumption of small displacements in deriving the ADR formulation. If the loading rate is large, this fundamental assumption of 
the ADR method is violated, leading to incorrect results. In our case, the velocity magnitude is 1.6×10−7 m/iteration and lasts for 
10,000 loading steps.
10 
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Fig. 8. This figure illustrates the distribution of damage and horizontal displacement along the specific lines, which are marked as the dashed red lines in each 
sub-figure. Different colors and markers indicate the change in number of loading steps.

Here, we can observe from Fig.  7 that the results obtained from the implicit schemes vary significantly with the number of loading 
steps. The results between the explicit and implicit simulations are only consistent when the number of loading steps is large enough 
in the implicit process, e.g., 500 and 1000. To visually observe the differences in the simulation results more intuitively, the damage 
distribution on the horizontal and vertical central lines are shown in Fig.  8.

It is evident that both damage and displacement vary significantly with the number of loading steps. Moreover, the results 
obtained from the implicit simulation converge to those from the explicit simulation as the number of loading steps increases.

As this case involves fracture propagation, the computational costs of the implicit scheme are at least 30 times larger than those 
of the explicit one. This is attributed to the requirement for a large number of loading steps to ensure computational accuracy.

3.4. Analysis of the implicit scheme for fracture evolution

Fig.  8 illustrates that the number of loading steps is crucial for computing fracture propagation. In essence, a smaller total number 
of steps leads to larger loading increments for each step, influencing the bond failure process and consequently leading to different 
11 
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Fig. 9. Figures (a) and (b) illustrate the variation of horizontal and vertical forces at the marked points as the number of loading steps changes, while the total 
displacement remains constant. The local force density is obtained during the implicit simulation procedure. Different colors and markers indicate changes in 
the number of loading steps. The scaling factor is denoted as 𝑄 (𝑄 = 𝛥𝑥3). The total displacements remain constant at 1.6 mm, while the number of loading 
steps vary, ranging from 10 to 2000.

simulations results. Previous studies have suggested that controlling the maximum number of failed bonds at each step is essential 
for accurate implicit simulations [52]. In other words, the smaller the loading increment, the less bond failure occurs at each step, 
and the more accurate the implicit scheme is for fracture problems. Increasing the number of loading steps to reduce the amplitude 
of the loading increment at each step is one of the most effective methods for controlling the maximum number of failed bonds 
at each step, even though it may significantly decrease the efficiency of the implicit scheme. It can be concluded that the implicit 
scheme is not an efficient choice to simulate fracture problems compared to the explicit-ADR method.

When a bond fails, the local forces applied to a PD node experience significant variations in terms of both magnitude and 
direction, regardless of the type of bond failure,i.e., whether it occurs as a sudden release or through a degradation model. The 
differentiation or finite difference in the forces acting on each PD point constitutes the primary element of the Jacobian matrix as 
depicted in Eq. (6). If the local forces exhibit pronounced fluctuations, the elements of the Jacobian matrix are inevitably affected 
and undergo significant variations. In the implicit format, the variations of PD forces are reflected in the elements of the Jacobian 
matrix.

To address the significant variations in local forces during fracturing process, it is necessary to use sufficiently small loading 
increments, resulting in a large yet essential number of loading steps. Fig.  9 presents the scaled forces of the first-damaged PD point 
(marked point) during the loading process of the case discussed in Section 3.3.

It is evident that a small number of loading steps smooth out the fluctuations in the local forces and significantly under-predict 
the variation of local forces once the fractures occur, which fails to describe the interaction forces between the PD points, leading 
to inaccurate results. Only with a sufficiently large total loading steps, the variation of local PD forces during fracturing process can 
be accurately described, making the number of loading steps critical for the implicit simulation to calculate fracture evolution.

It can be concluded that the implicit scheme is more suitable and effective compared to the explicit-ADR scheme for quasi-static 
problems without fractures. This is due to its very fast convergence speed and very few loading steps. However, when fracture 
12 
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Fig. 10. The adaptive process flowchart is depicted here. 𝑁𝑖 and 𝑁𝑒 are the number of loading steps of the implicit and explicit processes, respectively, to reach 
the total displacement load.

evolution is considered, the implicit scheme may require significantly more computational time than the explicit-ADR scheme due 
to the need for a sufficiently large number of loading steps to ensure accuracy.

To utilize the efficiency of the implicit scheme for quasi-static problems without fracture and mitigate its disadvantages in 
simulating fracture formation problems, we propose an adaptive strategy for quasi-static fracture formation problems, which will 
be presented in Section 4.

4. Adaptive strategy for quasi-static fracture problems

The proposed adaptive scheme is illustrated in Fig.  10. The entire process for solving quasi-static fracture problems is divided 
into three steps. The first step involves the implicit process for deformation computation, extending from the onset of deformation 
13 
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Fig. 11. The schematic diagram of displacement loading throughout the entire computation process, where 𝛥𝑢𝑖 , 𝛥𝑢𝑒 denote the displacement loading increments 
for the implicit and explicit simulations, respectively, and 𝑢𝑡𝑜𝑡𝑎𝑙 is the total displacement loading. The initial implicit process consists of 𝑛 steps, while the explicit 
process consists of 𝑚 steps, with 𝑁𝑒 steps to reach the total displacement load. The relationship between the displacement increments and the total displacement 
is 𝑢𝑡𝑜𝑡𝑎𝑙 = 𝑛 × 𝛥𝑢𝑖 +𝑁𝑒 × 𝛥𝑢𝑒.

to crack initiation. The second step comprises the explicit-ADR process for damage computation, continuing from the implicit step 
with inherited displacement and loading information, which proceeds until bond failure ceases. The final step switches back to the 
implicit process until completion.

When the tensile stretch of any bond exceeds a certain threshold, denoted as 𝑠𝑚, the implicit process terminates and switches 
to the explicit ADR process. Once the displacement reaches a final state, where no more bonds fail over an extended period, the 
explicit ADR process terminates, and the final implicit process resumes. Fig.  11 illustrates the displacement increments for both the 
implicit and explicit schemes.

It is worth noting that 𝑛 in Fig.  11 represents the actual number of computational steps executed in the initial implicit simulation 
of a general case, while 𝑁𝑖 in Fig.  10 is the number of steps set before calculation to generate an implicit loading increment 𝛥𝑢𝑖, 
𝛥𝑢𝑖 = 𝑢𝑡𝑜𝑡𝑎𝑙∕𝑁𝑖. In all the simulations, 𝑛 is not larger than 𝑁𝑖.

5. Numerical validation

We apply the present adaptive and explicit-ADR method to solve four different quasi-static problems. All the calculations are 
conducted using Julia programming utilizing a single core of the AMD EPYC 7763 64-Core Processor. The results and the processing 
times are compared using the same converge criterion.

5.1. Deformation of undamaged 3D bar under a transverse loading

In this benchmark case [9], the 3D bar has the initial length 𝑙 of 1 m, the width 𝑤 of 0.1 m, and the height ℎ of 0.1 m. The 
domain is uniformly discretized into 10,300 particles using the regular grid of 100 × 10 × 10, with an additional layer of fictitious 
thickness 3𝛥𝑥 at the fixed boundary on the left side of the bar. The horizon size is 3.015𝛥𝑥. The material is assumed to be isotropic 
and linear elastic with the Young’s modulus 𝐸 of 200 GPa and the density 𝜌 of 7850 kg/m3. The boundary and loading conditions 
are depicted in Fig.  12(b). The left end of the bar is fixed, while the right end is subjected to a downward vertical loading of 5000 N. 
The loading boundary is located on the outermost layer of the right end of the bar, with a boundary layer volume of 10 × 10×(𝛥𝑥)3. 
The loading is applied from the beginning as a body force density vector to the PD points within the loading boundary layer, with 
a value of 5×107 N/m3.

In this case, both the adaptive and explicit-ADR methods directly utilize the total pressure loading as the boundary condition 
and adhere to the same convergence criterion, as described in Eq. (16), where 𝑒0 is set to be 1×10−9. The adaptive method achieves 
convergence in just one step, while the explicit one requires approximately 20,000 steps.

We found that the results of the present adaptive method are consistent with those of the explicit scheme reported in the 
literature [9], with an acceleration ratio of approximately 141.7.

5.2. Damage evolution of a 2D square plate with a central hole under tensile loadings

This case is similar to the benchmark example of the citation [50], the 2D square plate has the initial length 𝑙 of 0.05 m. It is 
uniformly discretized into 2900 particles using the regular grid of 50 × 50, with two additional layers of fictitious thickness 3𝛥𝑥 at 
the displacement boundaries on both the top and bottom sides of the plate. The radius of the central hole is 0.005 m. The horizon 
size is 3.015𝛥𝑥. The material is assumed to be isotropic and linear elastic with the Young’s modulus 𝐸 of 192 GPa and the density 
14 
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Fig. 12. Figure (a) shows the contour diagrams of horizontal and vertical displacement obtained by the explicit-ADR and adaptive methods. Figure (b) shows 
the vertical displacement distribution along the horizontal central line of the bar, and the schematic diagram of geometry, boundary and loading. The loading 
position is marked in red.

𝜌 of 8000 kg/m3. The bond failure criterion is based on the degradation form as outlined in Eq. (12), with 𝑠𝑚 = 0.015, 𝑠𝑐 = 0.02, 
and 𝛽 = 3. The boundary and loading conditions are depicted in Fig.  13(b). The upper and lower ends of the plate are subjected to 
the outward vertical displacement loadings with a magnitude of 0.275 mm.

In this case, the total displacement loading is applied through both implicit and explicit loading processes in the adaptive method. 
The maximum number of steps for the implicit and explicit loading processes is set to be 3 and 180, respectively. This implies that 
the loading rate for deformation computation is 2.75×10−4∕3 m/iteration, while the loading rate for damage evolution computation 
is (1 − 𝑛∕3) × 2.75 × 10−4∕180 m/iteration, where 𝑛 is the step at which damage initiation occurs, as depicted in Fig.  11. As for the 
explicit-ADR scheme, the loading rate is set to be 2.75×10−7 m/iteration. In addition, both the adaptive and explicit methods use 
the same convergence criterion, as described in Eq. (16), where 𝑒  is set to be 1×10−9.
0

15 



S. Hu et al. Engineering Fracture Mechanics 320 (2025) 111046 
Fig. 13. The schematic diagram of geometry, boundary and loading is shown in (b1). (a1)–(a3) display the contour diagrams illustrating the distribution of 
damage, horizontal displacement, and vertical displacement. (b1)–(b3) depict the distribution of damage, horizontal displacement, and vertical displacement 
along the horizontal central line of the bar, which corresponds to the central axis at 𝑦 = 0, as denoted by the red dashed line in (a1).
16 
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Fig. 13. (continued).

As shown in Fig.  12(b1–b3), the red and green lines match each other perfectly, indicating that the adaptive computation results 
are in excellent agreement with those obtained from the explicit-ADR simulation, with an acceleration ratio of 10.7.

5.3. Damage evolution of a 2D plate subjected to three point bending

In this case, the 2D rectangular plate has the initial length 𝑙 of 0.24 m, and the width 𝑤 of 0.06 m. It is uniformly discretized into 
10,048 PD particles using the regular grid of 200 × 50, with three additional areas of fictitious thickness 3𝛥𝑥, and the span 4𝛥𝑥 at 
the displacement boundary on the three point for loading. The pre-existing notch is located at the center of the lower end, oriented 
vertically, with the length of 0.3𝑤 and the span of 2𝛥𝑥. The horizon size is 3.015𝛥𝑥. The material is assumed to be isotropic and 
linear elastic with the Young’s modulus 𝐸 of 200 GPa and the density 𝜌 of 8000 kg/m3. The bond failure criterion is based on the 
degradation form as described in Eq. (12), with 𝑠𝑚 = 0.016, 𝑠𝑐 = 0.02, and 𝛽 = 3. The boundary and loading conditions are depicted 
in Fig.  14 (b1).

As for the three point bending test, two points at the lower end are constrained from the vertical movement, each with a 
horizontal distance of 0.105 m from the center. Additionally, one last point located at the center of the upper end is subjected 
to the downward vertical displacement loading with a magnitude of 4 mm.

Here, the maximum number of steps for the implicit and explicit loading processes is set to be 5 and 1000 for the adaptive 
method, respectively. This implies that the loading rate for deformation computation is 4×10−3/5 m/iteration, and for damage 
evolution computation is (1 – 𝑛/5)×4×10−3/1000 m/iteration, where 𝑛 is the step at which damage initiation occurs, as depicted in 
Fig.  11. As for the explicit-ADR scheme, the loading rate is set to be 1×10−7 m/iteration. In addition, both the adaptive and explicit 
methods use the same convergence criterion, as described in Eq. (16), where 𝑒0 is set to be 1×10−9.

The results of the current adaptive method are in excellent agreement with those obtained by the explicit scheme, exhibiting an 
acceleration ratio of around 6.4.

5.4. Damage evolution of a 2D plate with multiple holes under a concentrated tensile loading

In this case, the 2D plate has the initial length 𝑙 of 0.065 m, the width 𝑤 of 0.12 m, as described in [59]. It is uniformly discretized 
into about 7800 particles using the regular grid of 65 × 120. There are four holes in the plate. The radius of the upper left and 
17 
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Fig. 14. The schematic diagram of geometry, boundary and loading is shown in (b1). (a1)–(a3) display the contour diagrams for the distribution of damage, 
horizontal displacement, and vertical displacement, respectively. (b1)–(b3) show the damage, horizontal displacement, and vertical displacement along the 
horizontal central line of the plate, respectively.

lower left holes for loading is 6.5 mm, while the radius of the smaller hole in the middle is 6 mm, and the radius of the larger one 
is 10 mm. The geometric layout is shown in Fig.  15.

In all the simulations, the linear isotropic elastic model is applied, with the Young’s modulus 𝐸 of 200 GPa and the density 𝜌 of 
8000 kg/m3. The bond failure criterion follows Eq. (12), with 𝑠𝑚 = 0.016, 𝑠𝑐 = 0.02, and 𝛽 = 3. The boundary and loading conditions 
are shown in Fig.  17(a1), where the holes on the left side experience the outward vertical displacement loadings of 8.0×10−4m.

Note that, considering the elimination of dependence on the regular distribution of PD points during crack propagation [60], 
we first examine the influence of the horizontal radius on the calculation results, as shown in Fig.  16. The ADR method is applied 
with the horizon radius varying from 3.015𝛥𝑥 to 8.015𝛥𝑥.
18 
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Fig. 15. The detailed geometric layout, where the values in parentheses represent the coordinates of the hole centers.

Fig. 16. The crack paths of the perforated plate under slow tension. The paths change with different horizon size.

It can be observed that as the radius increases, the crack morphology becomes consistent, indicating that when the radius is 
around 8.015𝛥𝑥, the grid dependence of crack propagation disappears. A horizon radius of 8.015𝛥𝑥 is selected for the subsequent 
calculations of fracture evolution. For the adaptive method, a horizon size of 3.015𝛥𝑥 is used throughout the material during the 
implicit simulation of the deformation stage.

Here, the maximum number of steps for the implicit and explicit loading processes is set to be 5 and 1500 for the adaptive 
method, respectively. This implies that the loading rate for deformation computation is 8.0×10−4/5 m/iteration, and for damage 
evolution computation is (1 –𝑛/5)×8.0×10−4/1500 m/iteration, respectively, where 𝑛 is the step at which damage initiation occurs, 
as depicted in Fig.  11. As for the explicit-ADR scheme, the loading rate is set to be 1×10−8 m/iteration. Both the adaptive and 
explicit methods use the same convergence criterion with 𝑒0 = 1×10−9 as described in Eq. (16).

The results of the current adaptive method are in excellent agreement with those obtained by the explicit scheme, exhibiting an 
acceleration ratio of around 46.4.

In summary, the table below lists the computational time consumed for the above four test cases. All the calculations were 
conducted, using Julia programming, on a single core of the AMD EPYC 7763 64-Core Processor (see Table  1).

It can be observed from the above simulations that the present adaptive method can efficiently solve quasi-static fracture 
problems, akin to the explicit-ADR scheme, which reduces computational costs significantly compared to the explicit scheme. We 
observe that the acceleration ratio 𝑟  of the adaptive method in comparison with the explicit-ADR scheme for the above four cases 
𝑎
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Fig. 17. Comparison of the explicit and adaptive methods. (a2)–(a3) show the damage distribution, (b1)–(b2) display the horizontal displacement, and (c1)–(c2) 
present the vertical displacement. (b3) and (c3) illustrate the horizontal and vertical displacement along Line 1 and Line 2, which are marked in (a1) by the 
white dashed lines.

Table 1
Summary of computational time.
 Case Number explicit-ADR

method (s)
Adaptive
method (s)

Acceleration ratio of
adaptive to explicit-ADR method

 

 1 4109 29 141.7  
 2 160 15 10.7  
 3 275 43 6.4  
 4 2368 51 46.4  
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Fig. 18. The relationship between 𝑟𝑛 and 𝑟𝑎 for the four test cases.

ranging from 6.4 to 141.7. In the entire simulation process of the 4 cases, including deformation and fracture propagation, we 
calculate the ratio 𝑟𝑛 of the number of steps from the beginning to fracture initiation to the total number of steps required for 
convergence to the specified precision, and reveal the relationship between acceleration ratios 𝑟𝑎 and 𝑟𝑛 as shown in Fig.  18.

It is evident that 𝑟𝑛 plays a significant role in the acceleration performance of the adaptive method: the larger 𝑟𝑛, the greater 
proportion of the deformation process in the entire process, and the better acceleration ratio due to more significant contribution 
of the implicit scheme. The result of Case 4 is unexpected, as its acceleration ratio 𝑟𝑎 is much larger than anticipated. The reason 
for this discrepancy is that, in Case 4, the acceleration effect stems not only from the greater proportion of the deformation process 
but also from the much smaller horizon size of 3.015𝛥𝑥 for the deformation stage of the adaptive method compared to 8.015𝛥𝑥
for the explicit scheme. Furthermore, due to the larger horizon size, which would result in a significant computational burden, the 
acceleration effect of the latter is more pronounced.

6. Concluding remarks

In this study, we have developed an efficient implicit BBPD model for solving quasi-static problems based on the full nonlinear 
equilibrium equation with a degradation bond failure function. We compared the computational efficiency of the explicit-ADR 
method and the newly-developed implicit method. Based on this, we proposed an adaptive explicit–implicit PD method to enhance 
computational efficiency for solving quasi-static problems. Three main conclusions drawn from this work:

(1) The Jacobian matrix based on the full nonlinear BBPD, derived from the NR procedure, exhibits typical properties such as 
sparsity, symmetry, and non-singularity, indicating good solvability.

(2) Regarding the computational efficiency of solving quasi-static problems using PD, the present implicit method performs well 
in computing damage-free deformations but struggles with damage evolution. This is because a sufficiently large number of loading 
steps are required for the implicit simulations to accurately compute damage evolution.

(3) Compared to the ADR and implicit methods, the explicit–implicit adaptive method presented in this work effectively utilizes 
the strengths of both methods, providing a more efficient solution for quasi-static fracture problems. Specifically, it outperforms the 
ADR method in the deformation stage and is more efficient than the implicit method in handling crack initiation and propagation. 
The accuracy and efficiency of our adaptive method are examined in the four test cases, revealing that the greater the proportion 
of the deformation process in the entire process, the more pronounced computational acceleration of the adaptive method.

As the current adaptive algorithm is demonstrated using BBPD, it is, at present, only applicable to linear elastic materials. Three 
key points are worthwhile for in-depth research in the future.

(1) No bonds fail during deformation, but the implicit simulation needs to calculate bond stretch for all the PD points at each 
step to decide whether to switch to the explicit scheme, which leads to substantial computational burden. The switching criteria 
may therefore be refined to avoid calculating bond stretch during the deformation stage, thus further reducing computational costs.

(2) The conjugate gradient method is used to solve the equations. Multiple numerical techniques, including preconditioning, 
may be exploited to expedite computations for large linear systems and further optimize the adaptive method.

(3) To extend the present explicit–implicit adaptive scheme to SBPD for more complex constitutive models, which is, in principle, 
straightforward.
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