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In this article, we present Kinetic Transport Solver for Radiation Therapy (KiT-RT), an open source C++-based
framework for solving kinetic equations in therapy applications available at https://github.com/CSMMLab/
KiT-RT. This software framework aims to provide a collection of classical deterministic solvers for unstruc-
tured meshes that allow for easy extendability. Therefore, KiT-RT is a convenient base to test new numer-
ical methods in various applications and compare them against conventional solvers. The implementation
includes spherical harmonics, minimal entropy, neural minimal entropy, and discrete ordinates methods. So-
lution characteristics and efficiency are presented through several test cases ranging from radiation transport
to electron radiation therapy. Due to the variety of included numerical methods and easy extendability, the
presented open source code is attractive for both developers, who want a basis to build their numerical solvers,
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and users or application engineers, who want to gain experimental insights without directly interfering with
the codebase.

CCS Concepts: • Mathematics of computing→ Solvers; • Applied computing→ Physics;

Additional Key Words and Phrases: Kinetic theory, radiation transport, radiation therapy, finite volume meth-
ods, machine learning
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1 INTRODUCTION
Personalized medicine in radiation oncology has been an important research topic over the past
few decades. To allow for accurate, reliable, and efficient treatment planning tailored toward indi-
vidual patient needs, there is a growing desire to undertake direct numerical simulation for radia-
tion therapy. High-fidelity numerical solutions enable quantitative estimation of the dose received
by the tumor as well as the surrounding tissue while allowing for an automated generation of op-
timal treatment plans. Besides the aim to ensure sufficient accuracy, such simulations are required
to run on limited computational resources such as workstation PCs.

Traditional methods to predict dose distributions in radiation oncology largely rely on simpli-
fied models, such as pencil beam models based on the Fermi-Eyges theory [21]. While such models
are computationally efficient, they often lack the required accuracy, especially in cases including
air cavities or other inhomogeneities [31, 37]. However, Monte Carlo (MC) algorithms, which
simulate individual interacting particles, achieve a satisfactory accuracy [6]. However, despite on-
going research to accelerate MC methods, their high computational costs currently render them
impractical for clinical usage [23, 34]. To obtain a computationally feasible model with comparable
accuracy, radiation particles are described on a mesoscopic level through the deterministic linear
Boltzmann equation [10, 65–67]. An efficient and accurate numerical approximation to the linear
Boltzmann equation can be achieved through the construction of grid-based macroscopic approx-
imations [19, 27, 68, 69]. Variants of grid-based methods for radiation therapy can be found in, for
example, References [7, 30, 32, 39, 41, 57].

The available grid-based methods employ various macroscopic approximations of the linear
Boltzmann equation that all exhibit certain advantages and shortcomings.

In Reference [19], the modal entropy method called MN is used as a macroscopic model. This
method preserves the positivity of particle distributions while yielding accurate results with lit-
tle spurious oscillations. However, the need to solve a possibly ill-posed optimization problem
in every spatial cell and timestep results in increased computational costs. While analytic solu-
tions to the optimization problems are available at small truncation orders, they cannot capture all
physical effects accurately. Further approaches aim at mitigating the challenge of the problem’s ill-
condition by regularization [4] or reducing the associated computational costs, e.g., using neural
networks [61].

In Reference [57] the use of computationally cheap nodal discretizations, known as the SN
method has been proposed. In this case, the solution remains positive, and it is shown that the
expensive scattering terms can be approximated efficiently with a Fokker-Planck approximation.
Furthermore, the solution can exhibit non-physical artifacts, known as ray-effects [43, 52, 55],
which reduce the approximation quality. While methods to mitigate ray-effects exist, see, e.g., Ref-
erences [2, 13, 24, 44, 64], they commonly require picking problem-dependent tuning parameters.
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In Reference [39], the modal PN method has been employed to derive a macroscopic model for
radiation treatment planning. While it does not preserve the positivity of the solution and can
potentially yield oscillatory approximations, it allows for an efficient numerical treatment of scat-
tering terms. In Reference [41] a combination of SN and PN methods that reduces computational
costs through a dynamical low-rank approximation [35] has been proposed. The efficiency of this
method relies on the ability to describe the solution through a low-rank function.

The variety of different methods allows for individual method choices tailored to different set-
tings. The comparability of different methods in a uniform framework is not only interesting for
clinical usage but also for future research in computational radiation therapy. The aim of our
open source C++ Kinetic Transport for radiation therapy (KiT-RT) framework is therefore
to provide a collection of available deterministic methods. Special focus is put on extendability by
the use of polymorphism to simplify the implementation of novel solution methods. The meth-
ods provided by our framework are optimized for an application on workstation PCs. This meets
the typical requirements in radiation therapy applications: For clinical usage, the computational
resources are often limited, and the time between recording the CT image and the actual treat-
ment must not exceed a certain time period. Hence, radiation therapy codes that are applicable
for clinical use should run efficiently on workstation PCs. Moreover, conventional codes often re-
quire structured grids [26, 38, 60, 62, 71], leading to inaccurate representations of structures on
CT images. While accuracy in practice is also limited by the CT density values that are given on
a structured grid, these are often downsampled to a lower resolution for dose computations. Fur-
ther, a recomputation of the CT values for unstructured grids is feasible if it improves the quality
of dose computations. Therefore, our framework provides functionalities for both unstructured
meshes that preserve organ outlines on CT images, as well as standard rectangular grids.

Note that in clinical practice, CT data are sometimes augmented with MRI or PET images, and
research on the use of MRIs for delineation as well as delivery has become increasingly popular in
recent years [17, 20, 58]. Here, we however focus solely on CT images, as it is the most common
imaging modality in practice [17] and provides attenuation as well as electron density information
required for the dose calculations [17, 20].

This article aims at presenting the developed framework and its functionality while providing
the necessary mathematical and physical background on the principles the software is based on.
In Section 2, we provide the underlying physical model as well as its reformulation as a time-
dependent partial differential equation. Section 3 discusses different macroscopic models as well
as the advantages and disadvantages of the individual underlying directional discretizations. Sec-
tions 4 and 5 focus on the used discretizations and software architecture, respectively. A study
on parallel efficiency and scaling is done in Section 6. Last, we validate our implementations and
analyze their performance for different test cases in Section 7. Extended details of the methods and
documentation of the code can be found on https://kit-rt.readthedocs.io.

2 PHYSICAL MODEL
Let us recap the main physical model that is used for computational radiotherapy treatment plan-
ning. In the following we will make use of the so-called continuous slowing down approximation,
which assumes a continuous, deterministic energy loss of particles proportional to the expected
energy loss. Note that this model is only valid when considering charged particles, i.e., electrons
or protons, whose interactions are dominated by Coulomb’s law.

The main goal is to compute the radiation dose distribution,

D (x) =
1

ρ (x)

∫ ∞

0

∫

S2
S (E, x)ψ (E, x,Ω) dΩ dE, (1)
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that results from a given treatment plan. Here E ∈ R+ is the energy, x ∈ X ⊂ R3 denotes the
spatial domain, and Ω ∈ S2 is the flight direction of particles. Moreover, ψ : R+ × R3 × S2 → R
denotes the radiation flux density and ρ : R3 → R is the patient tissue density. The stopping power
S : R+ × R3 → R models a continuous energy loss of particles due to scattering with tissue and is
defined as

S (E, x) =

∫ ∞

0
E ′

∫ 1

−1
Σ(E,E ′, x, µ ) dµ dE ′, (2)

with the scattering cross section Σ : R+ ×R+ ×R3 × [−1, 1]→ R. The radiation flux density, which
describes the probability of finding a particle at a certain region in phase space, can be computed
from the continuous slowing down (CSD) approximation [42] of the energy-dependent linear
Boltzmann equation,

− ∂E (S (E, x)ψ (E, x,Ω)) + Ω · ∇xψ (E, x,Ω) + Σt (E, x)ψ (E, x,Ω)

=

∫

S2
Σs (E, x,Ω · Ω′)ψ (E, x,Ω′) dΩ′.

(3)

This model assumes a continuous energy loss of particles traveling through a background material,
which is modeled using the stopping power S . The scattering cross section Σs (E, x,Ω ·Ω′) denotes
the probability of particles at position x with energy E changing their flight direction from Ω′ to
Ω due to a collision with the patient tissue. The total cross section Σt is given by

Σt (E, x) = Σs,0 (E, x) = 2π
∫ 1

−1
Σs (E, x, µ ) dµ . (4)

To simplify the evaluation of material properties, we follow the common assumption that all ma-
terials are water-equivalent and differ only in density (e.g., References [39, 57, 72]), i.e.,

S (E, x) = SH2O (E)ρ (x),

Σt (E, x) = ΣH2O
t (E)ρ (x),

Σs (E, x,Ω · Ω′) = ΣH2O
s (E,Ω · Ω′)ρ (x),

(5)

where we leave out the superscript H2O in the following. Cross sections for water are taken from
the ICRU database [28]. Having defined the prerequisites of our physical model, we can focus on
bringing it into a form that allows for computing numerical approximations efficiently. It turns out
that the energy variable in Equation (3) can be treated as a pseudo-time, which facilitates solving
the CSD equation. For a given maximal energy Emax let us define the transformed energy as

Ẽ (E) :=
∫ Emax

0

1
S (E ′)

dE ′ −
∫ E

0

1
S (E ′)

dE ′ (6)

and the transformed particle density as

ψ̃ (Ẽ, x,Ω) := S (E)ρ (x)ψ (E (Ẽ), x,Ω). (7)

Then, multiplying Equation (3) with S (E) and plugging in the defined transformation gives

∂Ẽψ̃ (Ẽ, x,Ω) + Ω · ∇x
ψ̃ (Ẽ, x,Ω)

ρ (x)
+ Σ̃t (Ẽ)ψ̃ (Ẽ, x,Ω) =

∫

S2
Σ̃s (Ẽ,Ω · Ω′)ψ̃ (Ẽ, x,Ω′) dΩ′, (8)

where we define Σ̃t (Ẽ) := Σt (E (Ẽ)) and Σ̃s (Ẽ,Ω · Ω′) := Σs (E (Ẽ),Ω · Ω′). Dropping the tilde
notation and treating Ẽ as a pseudo-time t gives a slightly modified version of the classical linear
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Boltzmann equation,

∂tψ (t , x,Ω)+Ω · ∇x
ψ (t , x,Ω)

ρ (x)
+ Σt (t )ψ (t , x,Ω) =

∫

S2
Σs (t ,Ω · Ω′)ψ (t , x,Ω′) dΩ′

ψ (t = 0, x,Ω) = S (Emax)ρ (x)ψ (Emax, x,Ω).
(9)

Hence, the CSD equation can be treated numerically with classical closure methods and space-time
discretizations. Note that a drawback of this formulation is the inverse tissue density arising in the
flux term. This term can require significantly reduced timestep sizes when small densities arise in
the CT scan. Let us first discuss methods to discretize the directional domain, yielding macroscopic
evolution equations.

3 MACROSCOPIC MODELS
This section discusses macroscopic models to Equation (9). These models are derived from nodal
and modal discretizations of the directional domain. Let us derive an evolution equation to de-
scribe the moments of the radiation flux with respect to the real-valued spherical harmonics basis
functions, which we denote by

m =
(
m0

0,m
−1
1 ,m

0
1,m

1
1, · · · ,mN

N

)T ∈ R(N+1)2
.

We wish to determine the expansion coefficients with respect to the spherical harmonics also called
moments

uk
ℓ (t , x) :=

∫

S2
ψ (t , x,Ω)mk

ℓ (Ω) dΩ.

Moreover, there exists a diagonal matrix Σℓ (t ) with entries Σℓ,kk = Σk
ℓ := 2π

∫
[−1,1] Pℓ (µ )Σs (t , µ )

dµ where Pℓ are the Legendre polynomials such that
∫

S2

∫

S2
mk

ℓ (Ω)Σs (t ,Ω · Ω′)ψ (t , x,Ω′) dΩ′dΩ = Σk
ℓ (t )uk

ℓ (t , x).

Deriving evolution equations for a finite number of moments by testing the original transport
equation with the spherical harmonics bases up to some order N leads to equations that depend
on the unknown moments of order N + 1, i.e., we need to find a closure. The most commonly
used closure sets the moments of order N + 1 to zero. The resulting method is called the spherical
harmonics (PN ) method [15]

∂t u(t , x) = −A · ∇x
u(t , x)

ρ (x)
− Σt (t )u(t , x) + Σu(t , x),

where A · ∇x := A1∂x + A2∂y + A3∂z with Ai :=
∫
S2 mmT Ωi dΩ and Σ = diag(Σ0

0, Σ
−1
1 , Σ

0
1, Σ

1
1, . . . ,

ΣN
N ). While PN is a computationally efficient method (especially for scattering terms), it does

not preserve the positivity of the radiation flux approximation and can lead to spurious oscilla-
tions [53]. A closure that mitigates oscillations and preserves positivity at significantly increased
computational costs is the MN closure.

The MN closure [46, 47] employs the principle of minimal mathematical, i.e., maximal physical
entropy to close the moment system. To this end, we define the twice differentiable, strictly convex
kinetic entropy density η : R+ → R. Different, problem-specific entropy densities can be defined,
e.g., the Maxwell–Boltzmann entropy η(д) = д log(д) − д. Thus, one can close the system by
choosing the reconstructed radiation flux densityψu that fulfills

ψu = arg min
д

∫

S2
η(д) dΩ s.t. u =

∫

S2
mд dΩ. (10)
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Using the minimizerψu to close the moment system, we obtain

∂t uℓ (t , x)+∇x ·
∫

S2
Ω ⊗ mℓ (Ω)

ψu (t , x,Ω)

ρ (x)
dΩ + Σt (t )uℓ (t , x) = Σℓuℓ (t , x). (11)

The minimal entropy method preserves important properties of the underlying equation [4, 47],
i.e., the positivity of the solution, hyperbolicity of the moment system, dissipation of mathemati-
cal entropy, and the H-Theorem. The minimal entropy closed moment system is invariant under
Galilean transforms. Last, if collision invariants of the Boltzmann equations are used as modal
basis functions, then the moment system yields a local conservation law.

In practice, the dual formulation of the optimization problem (10) is solved with a Newton
method with line-search. We also implement more efficient neural network–based solvers, as pre-
sented in Reference [61]. There, a neural network Nθ (u) is used to approximate the objective
function of (10) at its optimal pointψu, i.e.,

Nθ (u) ≈
∫

S2
η(ψu) dΩ, (12)

and recover ψu via the dual formulation and first-order optimality conditions. However, the en-
tropy closure becomes ill conditioned [4] and thus, a numerical optimizer requires a large number
of iterations to compute a solution. To mitigate this issue, a regularized version of the entropy
closure problem has been proposed by Reference [4], which adds a regularization term to the op-
timization problem (10). Then Equation (10) is reformulated as

min
д

∫

S2
η(д) dΩ +

1
γ

"""""u −
∫

S2
mд dΩ

"""""
2

2
, (13)

where γ > 0 is a regularization parameter.
The SN method [48] employs a nodal discretization for the directional domain. To facilitate

the computation of integral terms that arise due to scattering, the nodal point sets are commonly
chosen according to a quadrature rule with points Ωq and weights wq with q = 1, · · · ,Q . Possible
quadratures include the product rule, spherical Monte Carlo, Levelsymmetric [50], Lebedev [51],
and LDFESA [33]. A comparison of different quadrature sets and their approximation behavior for
SN methods can be found in Reference [14].

The evolution equations forψq (t , x) := ψ (t , x,Ωq ) are then given by

∂tψq (t , x)+Ωq · ∇x
ψq (t , x)

ρ (x)
+ Σt (t )ψq (t , x) =

Q∑

p=1
wp Σs (t ,Ωq · Ωp )ψp (t , x). (14)

A main disadvantage of SN methods are so-called ray-effects [43, 52, 55], which are spurious ar-
tifacts that stem from the limited number of directions in which particles can travel. Moreover,
radiation therapy applications exhibit forward-peaked scattering, which cannot be well captured
by classical quadrature rules. To allow for moderate computational costs when computing scatter-
ing terms and to efficiently treat forward-peaked scattering, one can transform the nodal solution
to a modal description and apply the more efficient PN methodology for scattering terms.

4 DISCRETIZATION METHODS
4.1 Spatial Discretization
The KiT-RT framework is based on unstructured, cell-centered grids as spatial discretization. In the
following, we restrict ourselves to a two-dimensional spatial grid; however, the notations can be
straightforwardly extended to three or one spatial dimension. An unstructured grid X̃ = {Xi }i ∈I
is a partition of a bounded spatial domain X ⊂ Rd . A grid cell Xi holds information about the
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coordinates of its centroid xi , its measure Ai , the indices of its boundary vertices, indices of its
neighbor cells N (i ) and cell faces. The information of the cell faces is encoded in the unit-normal
vector of the face dividing cell i and its neighbor j ∈ N (i ), multiplied with the measure of the
face and is denoted by ni, j . The grids used in this work are either triangular or quadrilateral,
unstructured grids in two spatial dimensions.

4.2 Finite-volume Methods
The nodal and modal methods are different approaches to discretizing the velocity space of the
Boltzmann equation. However, all of them result in a system of transport equations that can be
solved using a finite-volume scheme. Thus, we first describe a method agnostic finite-volume
scheme and afterwards point out the differences of the SN , PN , and MN -based implementations.
We denote the temporal variable by t ; however, the results hold for energy interpreted as
pseudo-time as well. Let g(t , x) ∈ Rm be the vector of conserved variables of a system of transport
equations,

∂t g(t , x) + ∇x · F(g(t , x)) = R(t , x, g(t , x)), x ∈ X, t ∈ [0, tf ), (15)
where F is the general flux function describing the solution transport and R is a general right-hand
side, containing velocity discretizations of collision terms, sources, and absorption terms. The
main discretization strategy is to divide the spatial domain into an unstructured grid with Nx
cells and the time domain into Nt discrete values 0 = t0 < · · · < tNt−1. We consider the solution
as an average over one space-time cell,

gn
i =

1
Ai

∫

Xi

g dx, (16)

and average Equation (15) over one space-time cell,
1

∆tAi

∫

Xi

∫ tn+1

tn

∂t g(t , x) dt dx+

1
∆tAi

∫

Xi

∫ tn+1

tn

∇x · F (g(t , x)) dt dx =
1

∆tAi

∫

Xi

∫ tn+1

tn

R (t , x, g(t , x)) dt dx,
(17)

where ∆t = tn+1 − tn . Solving the integrals using the Gauss theorem for the advection term and
an explicit Euler scheme for the time derivative yields

1
∆t

(
gn+1

i − gn
i

)
+

1
∆tAi

∫ tn+1

tn

∑

j ∈N (i )

F (g(t ,xi, j )) · ni, j dt = 1
∆t

∫ tn+1

tn

R (t , x, g(t ,xi )) dt ,
(18)

where д(t ,xi ) is the conserved variable evaluated at cell i and д(t ,xi, j ) is the conserved variable
evaluated at the interface between cell i and its neighbor j. To compute the actual value of gn+1

j ,
one needs to find approximations for the flux integral. A common ansatz is of the form

F (gn
j , g

n
i ) ≈ 1

∆t

∫ tn+1

tn

F (g(t ,xi, j )) · ni, j dt , (19)

where the numerical flux F (gn
j , g

n
i ) at face (i, j ) is approximated using the cell averaged conserved

variable at cell i and j. For transport equations, a well-known numerical flux is given by the
Upwind scheme [45]

F (gn
j , g

n
i )up = F (gn

i ) · ni, jH (ni, j · v) + F (gn
j ) · ni, j

(
1 − H (ni, j · v)

)
, (20)
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where H is the heaviside step function and v is the transport velocity vector. Finally, we approx-
imate the source, absorption and collision terms using the current cell average. Thus the explicit
solution iteration of a first-order scheme reads

gn+1
i = gn

i −
∆t

Ai

∑

j ∈N (i )

F (gn
j , g

n
i )up + ∆tR (t , xi , gn

i ). (21)

Since the scattering term R is commonly stiff, implicit-explicit (IMEX) schemes can be used to
remove influences of scattering from timestep restrictions. If we assume a linear scattering term,
that is with a given matrix Rn+1

i , then we haveR (tn+1, xi , gn
i ) = Rn+1

i gn
i , and the IMEX scheme reads

(I − ∆tRn+1
i )gn+1

i = gn
i −

∆t

Ai

∑

j ∈N (i )

F (gn
j , g

n
i )up . (22)

4.3 Second-order Finite-volume Schemes
The KiT-RT solver provides the option to evaluate the space and time discretizations using second-
order accurate schemes. To this end, we use a Heun scheme for the temporal discretization and
second-order upwind flux for the numerical flux [8]. Whereas first-order spatial fluxes assume
a constant solution value gn

i in a cell i , a second-order upwind scheme is based on a linear re-
construction of the conserved variable. Therefore the inputs gn

i and gn
j to the numerical flux of

Equation (20) are replaced by

g̃n
i = gn

i + Ψi∇xgn
i · ri, j , (23)

g̃n
j = gn

j + Ψj∇xgn
j · rj,i , (24)

where ri, j is the vector pointing from cell centroid xi of cell i to the interface midpoint between
cells i and j and Ψi is the flux limiter for cell i . This reconstruction is formally second-order accurate
on regular grids [3] assuming exact evaluation of the gradient∇xgn

i . The gradient of the conserved
variable gn

i is evaluated using the Green–Gauss theorem with interpolated solution values at the
cell interfaces,

∇xgn
i ≈

1
Ai

∑

j ∈N (i )

1
2

(
gn

i + gn
j

)
· ni, j. (25)

Second- or higher-order upwind spatial discretizations require the use of flux limiters to prevent
the generation of oscillations in shock regions and to achieve a monotonicity-preserving scheme.
In the KiT-RT package, the Barth and Jespersen [8] limiter as well as the Venkatakrishnan lim-
iter [70] are implemented. As an example, we show the computation of the Barth and Jespersen
limiter at cell i ,

Ψi = min
j ∈N (i )

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

min(1, gmax−gi
∆2

), if ∆2 > 0
min(1, gmin−gi

∆2
), if ∆2 < 0

1, else
, (26)

where we have

∆2 =
1
2∇xgn

i · ri, j , (27)

gmax = max(gi , gj ), (28)
gmin = min(gi , gj ). (29)
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The second-order Heun scheme for temporal discretization is a two-step Runge–Kutta scheme
with the iteration formula

g∗i = gn
i −

∆t

Ai

∑

j ∈N (i )

F (gn
j , g

n
i )up +

∆t

Ai
R (gn

i ),

g∗∗i = g∗i −
∆t

Ai

∑

j ∈N (i )

F (g∗j , g
∗
i )up +

∆t

Ai
R (g∗i ),

gn+1
i =

1
2

(
gn

i + g∗∗i
)
,

(30)

which is based on the implicit trapezoidal integration method.

4.4 Numerical Fluxes
In the following, we adapt the introduced numerical methods to the method-specific notation
and present the detailed implementation. The space- and time-averaged conservative variables
gn

i for the nodal discretization at cell i and timestep n are given by the vector of the radiation
flux ψn

i = [ψ1, . . . ,ψNq ]T ∈ RNq evaluated at the quadrature points. The different methods are
distinguishable by their numerical flux function. The corresponding numerical flux for the SN
method is given by

F (ψn
i ) = Ω ⊗

ψn
i

ρ (xi)
(31)

and the corresponding upwind flux reads

F (ψn
j ,ψ

n
i )up = Ω · ni, j

ψn
i

ρ (xi)
H (ni, j · Ω) + Ω · ni, j

ψn
j

ρ (xj)

(
1 − H (ni, j · Ω)

)
. (32)

For modal discretizations, gn
i is given by the moment vector un

i ∈ R(N+1)2 at cell i and timestep n.
The numerical flux for the PN method then reads

F (un
i ) =

[
A1un

i ,A2un
i ,A3un

i
]T , (33)

where Ai are the flux Jacobians emerging from the spherical harmonics recursion scheme. To
evaluate the numerical flux with an upwind scheme, we decompose the flux Jacobians in their
positive and negative definite parts,

Al = A+l +A
−
l , l = 1, . . . ,d . (34)

Then the numerical flux is given by

F (un
i , u

n
j )up =

d∑

l=1

(
A+l

un
i

ρ (xi )
+A−l

un
j

ρ (xj )

)
nlH (nl ) +

(
A−l

un
i

ρ (xi )
+A+l

un
j

ρ (xj )

)
nl (1 − H (nl )) .

(35)

In contrast to the PN method, the flux function of the MN method cannot be expressed as a matrix
multiplication but reads

F (un
i ) =

∫ 2

S
Ω ⊗ m(Ω)ψui

n
(Ω) dΩ, (36)

whereψui
n

is the reconstructed radiation flux density of the minimal entropy closure at the cell av-
eraged moment ui

n . Using a quadrature rule for the velocity integral discretization and a numerical
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flux for every quadrature point, we arrive at the kinetic numerical flux,

F (un
j ,u

n
i )up =

Q∑

q=1
wqmq Ωq · ni, j

⎡⎢⎢⎢⎢⎣
ψun

i ,q

ρ (xi )
H (Ωq · ni, j ) +

ψun
j ,q

ρ (xj )

(
1 − H (Ωq · ni, j )

)⎤⎥⎥⎥⎥⎦ . (37)

Note that the updated solution of the MN method must still be a feasible moment for the minimal
entropy closure of Equation (10). To ensure this, one must employ a flux-limiter [38], construct a
realizability reconstruction [40], or employ the regularized entropy closure formulation.

The numerical framework supports the usual Neumann and Dirichlet boundary conditions.

5 SOFTWARE ARCHITECTURE
The design principle of the KiT-RT software package is focused on efficient implementation, high
re-usability of its components, and ease of extension. It contains a set of efficient numerical solvers
for radiation transport, which are constructed of basic, reusable building blocks. These building
blocks can be freely arranged to implement new solvers or tools for completely different applica-
tions. However, KiT-RT is equipped with an easy-to-use command line interface based on readable
configuration files, which allows easy manipulation of the solvers. Thus the software is attractive
for developers, who want to experiment with the framework and build their numerical solvers as
well as users and application engineers, who want to gain experimental insights without directly
interfering with the codebase.

KiT-RT is implemented in modern C++ and mainly uses polymorphism for its construction. In
the following, we present the class structures used to build the numerical solvers and explain the
used building blocks, which are displayed in Figure 1. Most building blocks consist of a virtual
base class, which contains a static factory method to build an instance of the concrete derived
class, defined by the given configuration details. Furthermore, the virtual base class defines the
interface of this building block with other parts of the KiT-Framework.

5.1 Solver Class
The virtual SolverBase class is the basic blueprint for all time- or energy-dependent finite-volume
solvers of the KiT-RT framework. It holds an instance of the Config, NumericalFlux, ProblemBase,
QuadratureBase, and Mesh class.

It controls the screen, log, and volume output of the solver. The screen output provides instan-
taneous feedback of the solver state via the command line and gives information on the current
iteration, the total mass of the system, the residual of the radiation flux as well as the flow field,
and whether logs and volume outputs have been written to file. The file log carries the same in-
formation as the screen output in a tabular format. Last, the volume output consists of vtk files
with solver and problem-specific solution data. The output data can be specified in the solver
configuration.

The method Solve() of the SolverBase class drives the execution of all derived solvers by
iterating over the time discretization of the numerical methods described in Section 4. This main
time iteration is displayed in Algorithm 1. Each command is specified in the derived solver classes,
such as the PN solver, and does not induce any additional communication overhead for the par-
allelization architecture. The class PNSolver inherits from SolverBase. It does not own additional
instances of other custom building blocks and overwrites the sub-routines of Algorithm 1 for the
PN equation-specific numerical method, which allows for runtime solver assembly. Its child class
is the CSDPNSolver, which is the implementation of the PN -based continuous slowing-down
solver, that overwrites the solver-preprocessing routines for the continuous slowing down
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Fig. 1. Class and inheritance structure of the virtual SolverBase Class. Each instantiated Solver has class
members and routines specific to its numerical structure.

specific energy transformation. The PN -based solvers produce radiation flux and moments
as output.

The class SNSolver adapts the sub-routines of Algorithm 1 for the ordinate-based numerical
methods and is the parent class of the CSDSNSolver. SN -based solvers produce the radiation flux
as output.

Last, the MNSolver class contains the implementation of the MN numerical method. It further
holds the module SphericalBase, which controls the choice of basis functions m(v) of the velocity
space, the module EntropyBase, which controls the choice of the entropy functional for the entropy
closure, and, last, the module OptimizerBase, which controls the choice of numerical optimizer
used to compute the entropy closure. The class CSDMNSolver inherits from the MNSolver class
and analogously overwrites the sub-routines of Algorithm 1 for the continuous-slowing down
equations. MN -based solvers produce the radiation flux, moments, and dual variable of the entropy
closure as output.

5.2 Mesh Class
The mesh class handles the computational meshes of the spatial discretization of the underlying
differential equation. It can handle one-dimensional (1D) meshes and 2D unstructured triangular

ACM Transactions on Mathematical Software, Vol. 49, No. 4, Article 38. Publication date: December 2023.



38:12 J. Kusch et al.

ALGORITHM 1: Solution algorithm for SolverBase.Solve()
Input : u0

i orψ0
i : Initial condition of the test case

X̃: Mesh
Ri : Boundary and source terms

Result: unt f
i orψnt f

i : Solution values at final time nt f (and intermediate results, if specified)

if modal then
g0

i ← u0
i ∀i ∈ I /* Modal initial Condition */

end
if nodal then

g0
i ←ψ0

i ∀i ∈ I /* Nodal initial Condition */

end
for n = 0, . . . ,nt f do

g∗i , g
k=0
i ← gn

i ∀i ∈ I /* Runge Kutta initialization */

for k = 0, . . . ,krk − 1 do
if MN method then

ψk
u,i ← Closure(un

i ) ∀i ∈ I /* Entropy closure */

end
if 2nd order then

Ψk
i ← SlopeLimiter(i, j ) ∀i ∈ I /* Compute and limit spatial slopes */

end
F(gk

i ) ← ∑
j ∈N (i ) Fk

up, i, j ∀i ∈ I /* Flux computation */

gk+1
i ← gk

i − ∆t
Ai

(
F(gk

i ) + R(gk
i )

)
∀i ∈ I /* Pseudo time integration */

end
gn+1

i ← 1
2

(
g∗i + gkr k

i

)
∀i ∈ I /* Time integration */

end

and quadrilateral meshes in the SU2 [59] mesh format. The mesh class keeps a record of all geome-
try and adjacency information required for the finite-volume methods with first and second-order
fluxes.

5.3 Computational Problem Class
The problem class handles the setup of computational problems and test cases. It sets the
initial conditions for the solution of the numerical solver and manages space-, time-, or energy-
dependent material properties for the solver. The abstract class ProblemBase holds pointers to
the Mesh and Config classes and creates instances of specific problems depending on the chosen
configurations. Each implemented problem has two child classes, one for the ordinate-based
sovers and one for moment-based solvers. The moment-based problem classes compute the
moments of the initial condition and sources of the corresponding kinetic densities specified in
the ordinate-based problem class.

The solver framework comes with several pre-implemented test cases and functionalities. This
includes standard 1D and 2D test cases such as line source and checkerboard for the radiative
transfer solvers, as well as isotropic and directed sources with different background media that can
be loaded from a user-supplied image file, for the continuous slowing down solvers. Custom test
cases can be easily added by the user, based on the provided examples and our modular approach.
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5.4 Quadrature Class
The virtual QuadratureBase class creates instances of specific numerical quadratures using its
static factory method. The quadratures are intended to integrate over the velocity space of the
Boltzmann equation; however, they can be applied to other use cases as well. The implemented
quadratures are distinguished by the dimension of the integrated velocity space and the integration
area. Each quadrature has a specifiable order and manages the integration points in Cartesian and
spherical coordinates as well as the corresponding quadrature weights. By default, the quadrature
rules integrate over the unit sphere, but the integration region can be scaled.

5.5 IO/Use of Config Files
The KiT-RT solver is a command line interface-based program and takes one argument: the config-
uration file. This file is parsed and the specified modules of the KiT-RT framework are arranged for
a solver instance or another custom tool. The configuration file is a document containing option
specifications of the form CONFIG_OPTION=VALUE. A solver configuration contains information
about file input and output, where the location of the mesh file, the volume output files, and the log
files are specified. Then the computational problem and the problem-specific parameters, e.g., scat-
tering coefficient, final time, spatial dimension, and boundary conditions, are set. Next, the solver-
specific options are set. In the example of an MN solver, the choice of velocity basis, the maximal de-
gree of the basis functions, the CFL number, spatial integration order, entropy functional, optimizer,
quadrature, and quadrature order are set. Finally, quantities for the screen, volume, and log out-
put are specified along with their output frequency. Example configuration files for the numerical
results of Section 7 can be found in the Github Repository https://github.com/CSMMLab/KiT-RT.

5.6 Practices of Modern Software Development
The entire solver and associated documentation is put under the version control system git [16]
to greatly enhance collaborative workflows. Additionally, the web-hosting service GitHub is used
to provide global access to the code that is licensed under the open source MIT license.

To further improve collaborations, the service also acts as a central host for progress and issue
tracking, deployment, and maintaining code integrity. The latter is obtained for example through
automated testing in terms of unit tests, which ensure the validity of smaller code instances such as
functions or classes by testing predefined inputs against their expected result. Further, regression
tests are used that validate the correctness of the solver as a whole based on small test problems and
compare obtained results to reference solutions. These tests are automatically executed every time
code changes are submitted to the main development branches or if a merge request is opened.

If any of the automated tests fail for a new submit, then it is rejected for merging, ensuring
code integrity and quality on the important development streams at all times. Combining the
test information, we can further define metrics such as a test coverage describing the percent-
age of code lines validated by any form of testing and ultimately helping to build trust in the code
framework. For the KiT-RT framework, the test coverage is reported to the coveralls.io service at
https://coveralls.io/github/CSMMLab/KiT-RT. The KiT-RT framework features relatively modest
software dependencies, but being able to build and run the code correctly can be troublesome on
many systems. To circumvent this issue, we provide a pre-configured build environment through
the containerization engine Docker [54]. These so-called Docker containers have been developed
for consistent software development and deployment and work as isolated instances with a mini-
mal software stack comparable to lightweight virtual machines. The respective specialized docker
image is also publicly available at https://hub.docker.com/r/kitrt/test.

As mentioned previously, GitHub can also be used for the deployment of precompiled software
packages and the associated documentation. The documentation is automatically generated as
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part of a complete software build. It is written in the reStructuredText Markup language and uses
the documentation framework Sphinx [11], which compiles the Markup files to a series of linked
HTML files or in other words a local website. To make the website itself publicly available it is
hosted by ReadTheDocs1 service under the URL https://kit-rt.readthedocs.io.

With all these tools in mind, the development workflow can be described as follows: Starting
on GitHub, each developer can create a new branch based on the development branch or fork
the entire KiT-RT framework to obtain a personal workspace. After the developers have added
their changes, they can file a merge request that will automatically be tested by the continuous
integration processes, and a core developer will perform a code review of all changes. Provided
all tests succeed and the core developer is satisfied with the added/changed code quality, it will be
merged into the development branch. If enough new features have been added to the development
branch, then it will be merged into the master branch and the software will obtain a new version
number (major or minor).

6 PARALLEL SCALING
In the following, we investigate the parallel performance of the three base solver implementations
SN , PN , and MN , where we follow Reference [56] for the brief review of parallel scalings. The
speedup of a parallel algorithm is defined as

S (n,p) =
T ∗ (n)

T (n,p)
, (38)

where T ∗ (n) is the execution time of the best inherently serial algorithm with input size n and
T (n,p) the time for the parallel implementation with p processing workers and input size n. In
theory the best possible speedup is linear [22], i.e., S (n,p) = p. Further, the measure of parallel
efficiency is

E (n,p) =
S (n,p)

p
. (39)

The upper bound for the speedup is given by Amdahl [29]

S (n,p) ≤ 1
f + (1 − f )/p

, (40)

caused by communication overhead of the parallel workers as well as the fraction of inherently se-
rial code f . In the following, we focus on numerical studies for strong scaling of KiT-RT, since the
software is designed for shared memory parallelism with OpenMP on workstations with limited
memory resources. Thus, we inspect the performance of the S10, P9, M3 and neural network–based
M3 method in the checkerboard test case for a fixed grid size of n = 700, 000 cells. The grid is par-
titioned and distributed among p cores, and S (n,p) is displayed in Figure 2. The detailed computa-
tional setup for the methods and the simulation performance is discussed in Section 7.2 Figure 2
shows a comparison of the solvers’ parallel scalings and efficiency. The M3 methods exhibit the
best speedup, caused by a high computational load per core, which reflects in overall higher tim-
ings. Additionally, MN methods require less communication between cores, since the size of the
PDE system is generally smaller than for PN and SN methods for similar numerical accuracy.

The performance of the continuous slowing down solver implementations follows the corre-
sponding base solver performance, since the same spatial, velocity, and (pseudo) temporal dis-
cretizations are used.

1https://readthedocs.org/
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Fig. 2. Strong parallel scaling, and parallel efficiency, for the (neural network based) M3, S10, and P9 solver
in the checkerboard test case with 700, 000 grid cells. The mean iteration time is computed per 10 iterations.

7 VALIDATION
For validation and a comparison of the implemented solvers, we consider a selection of the test
cases provided within the problem class (5.3). The SN solver is validated with a comparison with
Kinetic.jl [73, 74]. The continuous slowing down solvers are further compared to a reference Monte
Carlo solution computed using TOPAS [60] as well as the validated spherical harmonics solver
StarMap [62].

7.1 Inhomogeneous Linesource
In the following, we compare the numerical results for the continuous slowing down approxi-
mation of our framework to a Monte Carlo solution, computed using TOPAS [60] as well as the
staggered-grid spherical harmonics solver StarMap [62]. The problem considered is an inhomo-
geneous Linesource test case, which extends the classical Linesource benchmark [9, 25, 26] to a
steady-state but energy-dependent setting. We consider a spatial domain X = [0, 1]2 and a velocity
domain V = PR2 (S2). As background density, we choose a piecewise constant function

ρ (x) = 1 + 4 · 1Xright (x), x ∈ X. (41)
In the left part of the spatial domain Xleft = [0, 1]× [0, 0.56] a reduced density is used, compared to
the right part of the spatial domain Xright = [0, 1]× [0.56, 1]. At a maximal energy of Emax = 1, i.e.,
initial pseudo time, a particle beam is positioned in the center of the spatial domain x0 = [0.5, 0.5]T ,
which is modeled as

f (E, x, v) =
1

2πϵ2 exp
(
− ∥x − x0∥2

2σ 2

)
, E = Emax, (42)

f (E, x, v) =0, E = Emax, x ∈ ∂X. (43)
Here a standard deviation of ϵ = 0.01 is chosen to obtain a sharp particle beam in the center. No
source term is used in the simulation and boundary conditions are zero-valued Dirichlet conditions,
i.e.,

f (E, x, v) =0, x ∈ ∂X. (44)
The scattering cross section σs of the collision operator of the continuous slowing down approx-
imation (9) is set constant to 1. The spatial grid for all deterministic methods is a structured rect-
angular grid with 3002 cells. Due to the functionality of the Monte Carlo software, we use a three-
dimensional grid and project the x3-domain onto the x1 − x2 plane. To allow for feasible costs, the
Monte Carlo method uses a coarser grid resolution of 100 spatial cells per dimension, and 100,000
Monte Carlo runs are computed to reduce statistical noise. The SN solver uses a product quadrature
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Fig. 3. Comparison of simulation results of deterministic and stochastic methods. The M3 and regularized
M3 methods coincide best with the Monte Carlo reference, surpassing StarMap in accuracy, as seen in the
logarithmic scale plots.

rule of order 20 for the streaming step and spherical moments up to order 8 to compute scattering
terms. Similarly, the PN solver employs spherical moments up to order 8 and the MN solver as
well as its regularized counterpart uses spherical harmonics of order 3. The timestep restriction of
all deterministic methods picks a CFL number of 0.7. All methods are second order in space and
time using the Barth and Jespersen slope limiter. The resulting dose profile, i.e., the zeroth-order
moment of the kinetic density,

u0 (x, t ) =
∫

V
f (t , x, v) dv, (45)

is plotted in Figure 3 along the x1-axis in the interval x1 ∈ [0.3, 0.65] at x2 = 0.5. All methods
show similar behavior and agree well with the Monte Carlo results. Moreover, it is observed that
the regularized MN method seems to coincide with its non-regularized counterpart and is closer to
the Monte Carlo reference than the SN and PN methods. The StarMap solution mostly undershoots
the Monte Carlo reference, whereas all KiT-RT solutions slightly overshoot it.

7.2 Checkerboard
The checkerboard test case [12] mimics a nuclear reactor block with a strong radiative source in
the domain center, which is denoted by Xq , and several highly absorptive regions Xa placed in a
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Fig. 4. Simulation results of various KiT-RT solver for the checkerboard test-case in log scale; S10, P5, M3,
and regularized M3 solver (left to right).

checkerboard pattern around it, see Figure 4. The corresponding time-dependent linear Boltzmann
equation reads

∂tψ + Ω∇xψ + Σt =

∫

S2
Σs (t , x,Ω,Ω∗)ψ (Ω∗) dΩ∗ + q(t, x,Ω) (46)

for x ∈ [0, 7]2, t ∈ [0, 10), and Ω ∈ PR2 (S2). This corresponds to Equation (9) with ρ (x) = 1. We
equip the equation with Dirichlet boundary conditions and initial condition,

ψ (t , x,Ω) =0, x ∈ ∂X, (47)
ψ (t , x,Ω) =0, t = 0, (48)

to obtain a well-posed problem. Furthermore, the scattering kernelk and source termq are assumed
to be isotropic and constant in time. The scattering cross and absorption cross sections are given
by

Σs (x) =
⎧⎪⎨⎪⎩

0 x ∈ Xa

1 else
, Σt (x) =

⎧⎪⎨⎪⎩
10 x ∈ Xa

1 else
, (49)

and the isotropic source is given by

q(x,Ω, t ) =
⎧⎪⎨⎪⎩

1 x ∈ Xq

0 else
. (50)

We create an unstructured triangular mesh with 25, 000 cells to discretize the spatial domain with
regard to the absorption and source regions, such that the region boundaries coincide with the
mesh faces. The simulation is computed until the final time tf = 10 using various solver config-
urations. All employed solvers use a second-order upwind flux as the spatial discretization and
a second-order explicit Runge Kutta scheme for temporal discretization with CFL number equal
0.45, since MN solvers with non-regularized entropy closure require a CFL number smaller than
0.5 for stability [5, 38, 40]. The solution computed at final time tf = 10 is displayed in Figure 4,
where we can see the scalar flux

Ψ(x, t ) =
∫

S2
ψ dΩ, (51)

in the contour plot in log scale. The radiation flux is highest at the source region Xq and almost
zero in the absorption region Xa for all solvers. Toward the top of the domain, the radiation travels
freely, whereas toward the left, right, and bottom, the radiation expansion is damped by absorption
regions. Figure 4 shows the the S10 solver with a tensorized Gauss Legendre Quadrature, the P5
solution with a spherical harmonics basis, the M3 solution with a spherical harmonics basis and a
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Fig. 5. Validation of the KiT-RT S10 solver against kinetic.jl [74] ((a) and (b)) and comparison of all KiT-RT
solvers ((c) and (d)) using cross sections for the checkerboard test-case. Left: Results in log scale, right: results
in linear scale.

Newton optimizer with line-search configured to accuracy 1e−7 and the regularized M3 solution
using the same optimizer and basis. As seen in Figure 5, the deviation between implementations
of the S10 solver and the reference solution given in Reference [74] is below the 1e−3, which is the
characteristic length of a grid cell. Furthermore, the cross sections of all KiT-RT-based methods
coincide with grid accuracy, except for the non-regularized M3 method. Note that the regularized
M3 solution is much closer to the other methods due to better condition of the entropy closure
problem near absorption regions.

Next, we compare a non-regularized M1 solver using a monomial basis and a Newton solver–
based entropy computation with an M1 solver using a neural network–based entropy closure [61].
In the KiT-RT package, we have compiled the trained networks in Reference [61] to C++ and have
implemented a fast tensorflow [1] back-end for seamless integration into the KiT-RT framework.
Both the Newton-based and neural network–based solutions correspond well, as Figure 6 shows.
Only at the top of the domain, i.e., at x ≈ 6.5 in the cross-section plot, do we see a small deviation
between the methods. In this region at the wave-front of the radiative transport, the moments of
the kinetic equation are close to the boundary of the realizable set, where, on the one hand, the
Newton-based solver needs more iterations and thus more wall time to compute the solution to the
optimization problem, and, on the other hand, the neural network accuracy declines slightly. We
validate the speedup through the neural network entropy closure using a larger mesh of 700, 000
grid cells. The time consumption of the M1 and neural network–based M1 solver is illustrated in
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Fig. 6. Comparison of a Newton-based M1 and neural network–based M1 solver for the checkerboard test
case in log scale (left) and linear scale (right). The solution of both methods correspond well.

Table 1. Wall Time Comparison for One Iteration of the Neural Network Based M1 Solver
Compared to the Newton-based M1 Solver for the Checkerboard Test Case

Mean iteration time [s]
Comp. cores Newton Neural Network Time reduction (%) Speedup (×)

4 757.89 80.81 89.33 9.45
12 258.65 33.61 87.01 7.81

Table 1, where one can see that the neural network–based closure accelerates the computational
time by 89.33–87.01%.

7.3 Beam in 2D Patient CT
Having validated the CSD solvers against StarMAP and a Monte Carlo framework in Section 7.1,
we now examine a realistic 2D CT scan of a lung patient as a proof of concept for the application of
our framework to radiation therapy computations. The patient data were retrieved from an open
source dataset [49] in The Cancer Imaging Archive [18]. The patient is irradiated with an electron
beam of Emax = 20 MeV. We model this beam as the initial condition

ψ (Emax , x,Ω) =
1

(2π )3/2σΩ2σxσy
· exp(−(µΩ2 − Ω2)2/2σΩ2 )

· exp(−(µx1 − x1)2/2σx1 ) · exp(−(µx2 − x2)2/2σx2 ),

where (µx1 , µx2 ) = (2.5cm, 5.8cm) is the beam position within the 6cm × 6cm domain and
µΩ2 =

π
2 rad is the beam direction. The remaining parameters are chosen as σx1 = σx2 = σΩ2 = 0.1.

To determine a tissue density ρ for given gray-scale values of the CT image, we set the maximum
density, represented by white pixels, to the density of bone ρbone = 1.85 g/cm3. The remaining
tissue is scaled such that the minimum pixel value of zero corresponds to a minimum density of
ρmin = 0.05 g/cm3. This corresponds approximately to the lower bound of observed lung densi-
ties [36].

Figure 7 compares the normalized dose for a CSD S13, P13, and M5 solver. While all methods
show similar behavior and can capture the effects of heterogeneities in the patient density, some
differences, e.g., in the maximum depth of the S13 solution compared to P13 and M5 or the shape
of the lowest two isolines can be observed. The cross sections in Figure 8 further show that the
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Fig. 7. Patient CT scan with lung tumor with simulation results for the (a) S13, (b) P13, and (c) M5 solver with
spherical harmonics basis and partially regularized entropy.

Fig. 8. Vertical (at x = 2.5 cm) and horizontal (at y = 5 cm) cross section through the normalized dose in the
patient CT. Comparison of the S13, P13, and partially regularized M5 solver.

Table 2. Wall Time Comparison for the S13, P13, and Partially
Regularized M5 Solver on Eight Cores for the 2D Beam in

Patient CT Test Case

S13 P13 M5
Mean iteration time [s] 3836.82 18633.03 50729.98

S13 dose has a lower maximum and higher minimum value than the M5 and to a lesser extent also
P13 solutions. In conjunction with results from a homogeneous beam test case (see Reference [63]),
this indicates that the modal methods perform slightly better for forward-peaked sources than the
standard SN method.

Table 2 presents runtime comparisons for three KiT-RT solvers. It has to be noted that the perfor-
mance depends on the choice of several hyperparameters as well as the application case. For a fair
comparison, it would be necessary to analyze the performance for fixed error levels and a variety of
test cases with reliable reference solutions. The SN method is the fastest, since computational cost
of the numerical flux and the scattering operator is of the order of magnitude of an inner product,
followed by PN method, whos numerical flux cost is dominated by the matrix-vector evaluation
of the Roe matrix and the moment vector. The MN methods cost is mostly driven by the expense
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of the entropy closure. The memory footprint of the PN and MN method is given by the size of
the spherical harmonics basis, that is N 2 for a basis of degree N . Remark, that MN need far less
basis functions to achieve the same accuracy as PN . For the SN method the total system size is
2N 2, given by the number of quadrature points of the tensorized Gauss Legendre quadrature.

The observed runtimes for SN and PN are slightly quicker than those of a large, parallelized
MC code like TOPAS. In terms of speed, KiT-RT is currently not competitive with simplified mod-
els such as pencil beam methods. Since these do not solve the full transport problem, they can,
however, not guarantee the same accuracy, especially in the presence of heterogeneities.

8 CONCLUSION
In this work, we have presented a collection of deterministic transport solvers for radiation therapy
applications. The methods agree well with results obtained with conventional radiation therapy
codes. Due to the use of polymorphism, we can guarantee a straightforward extension to further
numerical methods, which facilitates the investigation of novel radiation therapy solvers and their
comparison to conventional methods.
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