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Abstract: In fluid mechanics, modal decomposition, deeply intertwined with the concept of sym-
metry, is an essential data analysis method. It facilitates the segmentation of parameters such as
flow, velocity, and pressure fields into distinct modes, each exhibiting symmetrical or asymmetrical
characteristics in terms of amplitudes, frequencies, and phases. This technique, emphasizing the role
of symmetry, is pivotal in both theoretical research and practical engineering applications. This paper
delves into two dominant modal decomposition methods, infused with symmetry considerations:
Proper Orthogonal Decomposition (POD) and Dynamic Mode Decomposition (DMD). POD excels in
dissecting flow fields with clear periodic structures, often showcasing symmetrical patterns. It utilizes
basis functions and time coefficients to delineate spatial modes and their evolution, highlighting
symmetrical or asymmetrical transitions. In contrast, DMD effectively analyzes more complex, often
asymmetrical structures like turbulent flows. By performing iterative analyses on the flow field,
DMD discerns symmetrical or asymmetrical statistical structures, assembling modal functions and
coefficients for decomposition. This method is adapted to extracting symmetrical patterns in vibration
frequencies, growth rates, and intermodal coupling. The integration of modal decomposition with
symmetry concepts in fluid mechanics enables the effective extraction of fluid flow features, such as
symmetrically or asymmetrically arranged vortex configurations and trace evolutions. It enhances
the post-processing analysis of numerical simulations and machine learning approaches in flow field
simulations. In engineering, understanding the symmetrical aspects of complex flow dynamics is
crucial. The dynamics assist in flow control, noise suppression, and optimization measures, thus
improving the symmetry in system efficiency and energy consumption. Overall, modal decompo-
sition methods, especially POD and DMD, provide significant insights into the symmetrical and
asymmetrical analysis of fluid flow. These techniques underpin the study of fluid mechanics, offering
crucial tools for fluid flow control, optimization, and the investigation of nonlinear phenomena and
propagation modes in fluid dynamics, all through the lens of symmetry.

Keywords: fluid mechanics; modal decomposition technology; proper orthogonal decomposition

1. Introduction

In recent years, with the rapid development of computer technology, researchers can
obtain more abundant flow field information through various technologies (such as Particle
Image Velocimetry (PIV) technology, computational fluid dynamics (CFD), numerical
simulation, etc.). However, it is very difficult to qualitatively analyze the complex and high-
dimensional system that is obtained, and the computational cost is very high. Therefore, it
is very important to reduce the dimensionality and the degrees of freedom in the original
system, and it is necessary to replace the original high-dimensional complex model with a
simplified model. At present, researchers have obtained some mature dimension reduction
methods, such as the Proper Orthogonal Decomposition (POD) method, the Dynamic Mode
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Decomposition (DMD) method, and the central manifold method. Among them, the POD
method is more popular because of its wide range of applications and its strong accuracy.

Since the 1900s, modal decomposition techniques have achieved many representative
results in fluid mechanics: as early as the 1930s, the Karman–Trefftz modal decomposition
method decomposed the flow field into different modes. This method was widely used
in the fields of aerodynamics and hydrodynamics at that time. Then in the 1970s, the
Morf mode decomposition was obtained by combining the time-averaging technique
with the Karman–Trefftz mode decomposition method. This method has replaced the
Karman–Trefftz modal decomposition method in the analysis of turbulent flow fields and
promotes the development of aircraft dynamics and environmental fluid mechanics. With
the vigorous development of computer technology in the 1990s, POD can decompose
the data set into specific modes. In fluid mechanics, the POD method can perform low-
dimensional approximate analysis on the turbulent flow field, which greatly speeds up the
calculation speed. It is used in combustion fluid mechanics and multiphase flow dynamics.
It has also been widely used in other fields. Entering the 21st century, DMD uses the
evolution characteristics of the flow field in time to decompose. This method enables
a more accurate study of the characteristics of unstable flow and analysis of the noise
phenomenon caused by the flow. Figure 1 [1,2] shows two application of POD and DMD in
fluid mechanics

Figure 1. Development of modal decomposition methods in fluid mechanics [1,2].

The POD method is a mathematical tool for analyzing multi-dimensional data. The
functionality of it is to describe the high-dimensional complex system in a low-dimensional
approximate manner, to express the main features of the research target with fewer degrees
of freedom, and then to achieve the purpose of simplifying the physical model, thereby
saving computing time and computing load. The POD dimensionality reduction technology
can perform the optimal low-dimensional approximation to the given data in the sense
of fewest squares, so the POD method can efficiently solve the dimensionality reduction
problem in the numerical simulation process of practical problems. POD is a method
for processing large amounts of data, and it has good applications in flow field modal
decomposition and model reduction. This method decomposes the flow field into different
modes according to the difference in the energy level. Each mode is the product of an
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orthogonal basis function and a time function, which can be regarded as a time-varying
flow structure with a specific energy amplitude. Its essence is that it projects the time-
varying raw signal onto a set of time-varying superpositions of mutually orthogonal
spatial signals. POD is widely used in engineering. The POD method has many aliases in
different research fields, including KLD (Karhunen–Loève decomposition), KLE (Karhunen–
Loève expansion), and PCA (principal component analysis). The POD method was first
proposed by Pearson [3] in 1901 and then proposed again by Hotelling [4] in 1933. In
addition, scholars in different fields, such as Kosambi, Karhunen, Pougachev, and Loeve,
also proposed this method independently [5]. Subsequently, the POD method has been
widely used in the field of fluid mechanics. In the study of fluid mechanics, the POD method
is considered to be a powerful technical means to study turbulent flow and to understand
the dynamic of complex flow mechanisms. In 1967, Lumley [6] applied the POD method
to the field of turbulent flow research for the first time and identified identifiable flow
structures with clear statistical periods and shapes in the flow field through orthogonally
decomposing the space and velocity correlation functions. Most of the energy of the entire
flow field is contained in the coherent structure, and this method is called the direct POD
method. Lumley’s distinctive POD turbulence research has aroused widespread attention
and influence. However, in dealing with practical problems, the dimension of the spatial
correlation matrix is very large, which seriously restricts the application of the POD method.
In order to avoid the above problems, in 1987 Sirovich [7] improved the POD method and
proposed the Snapshot POD method, which replaced the spatial correlation matrix with
the temporal correlation matrix. This solved the problem of the huge spatial matrix caused
by too many spatial points and enabled the calculation. The amount was greatly reduced,
and the problem that could not be solved by the direct POD method before was solved.
The improved Snapshot POD method is a landmark work product found in the Spectral
Orthogonal POD correlation. Since then, the POD method has been more widely used
and has been gradually applied to other fields besides fluid mechanics, such as modal
analysis [8], stochastic structural dynamics [9], etc.

Since the POD mode may contain various flow structures with different frequencies,
when flow field research needs to start from the mode with a lower frequency or energy,
the mode obtained by the POD method alone is not enough to support the research [10].
Schmid proposed a DMD method in their study. Dynamic Mode Decomposition (DMD) is
a highly general matrix decomposition technique based on singular value decomposition,
and the low-rank structure and temporal features extracted from the DMD are associated
with their temporal–spatial evolution. The importance of matrix decomposition methods
and time series representations for data analysis can be understood if the influence of
Principal Component Analysis (PCA) and the Fourier transform is considered. From a
conceptual point of view, the DMD method has a rich history, stemming from Bernard
Koopman’s seminal work on nonlinear dynamical systems in 1931 [11]. However, due to
the lack of computing resources in his day, theoretical development was largely limited.
Interest in Koopman’s theory was established by Mezić et al in 2004–2005 [12]. Schmid
and Sesterhenn [2] and Seena [13] first defined DMD as an algorithm in 2008 and 2011,
respectively. Rowley [14] quickly realized that the DMD algorithm is directly connected to
the underlying nonlinear dynamics through the Koopman operator, opening the theoretical
foundation for DMD theory. Much credit for the success of DMD can therefore be directly
attributed to the pioneering contributions of Igor Mezic (UC Santa Barbara), Peter Schmid
(Imperial College), and Clancy Rowley (Princeton University). The DMD method is not
limited by the type of flow and can adopt experimental or numerical simulation results to
analyze the dynamic characteristics of the flow field through directly extracting dynamic
information from the data [15]. This method regards the flow field as a superposition of
flow structures with different frequencies and calculates the modes and the eigenvalues of
each order. Each DMD mode is independent of each other in time. It is precisely because of
this that each mode calculated by the DMD method represents a unique frequency, so it
performs better in dynamic linear analysis and periodic flow analysis [16]. Compared with
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the POD method, the DMD method can analyze the contribution of the flow structure to the
flow field from the stability of the mode [17]. The widely used DMD method is developed
based on the Koopman operator theory. The core of the Koopman theory is to transform
the nonlinear system into an infinite-dimensional linear operator. Based on this, the DMD
is extended to nonlinear systems and applied to the study of nonlinear flow [18] to express
the change of certain data in the research object with time. Rowley et al. [2] identified that
the DMD mode is a part of the Koopman mode and wrote the DMD calculation method
through the friendship matrix.

2. Introduction to the POD Method
2.1. Classic POD Method

Intrinsic Orthogonal Decomposition (hereinafter referred to as POD) is a method
derived from the statistical analysis of vector data, which is widely used in data dimen-
sionality reduction, flow field analysis, etc. It involves a consideration of the m times when
measuring the same phenomenon, and each measurement value is a vector containing
a large number of n real number items xk, k = 1, 2, . . . , m (where xk is a digital image
obtained in the kth trial). An important goal of the statistical analysis of the data is to
discover interdependencies in the data and to reduce the data set to a r ≪ n with a smaller
number of parameters. Mathematically, this situation can be described as an optimization
problem [19]:

E|x − Px|2 → min (1)

S is a random real vector in the real number space Rn and E is the expected value. The
essence of the above formula is to find the minimum mean square error. P is the projection
operator of rank r, namely:

P = VU, UV = Ir (2)

Assuming the matrix W, the above problem has a solution for the r main eigenvectors
of the covariance array:

W = Wx = Exx′ (3)

Then, α2
1 ≥ α2

2 ≥ . . . are set to the ordered eigenvalues of W, and ik is the corresponding
orthonormalized eigenvectors, namely:

Wik = αik, i′kik = β (4)

Then, the optimal orthogonal projection P is:

P = VV′, V = [v1 v2 . . . vr] (5)

If, and only then, αr > αr+1.
With the deepening of the research in different fields and into actual needs, the POD

method has also been improved in different directions. In addition to the traditional
Classic POD, Sirovich proposed the Snapshot POD in 1987. This POD method improves
the efficiency of solving matrix eigenvalues by reducing the order of the autocorrelation
matrix and making it equal to the number of snapshots. The result is improved speed,
and computation and simulation stability [20]. Both decomposition methods are used in
engineering. When faced with the problem of data loss due to some reason, the Gappy
POD method can be used to repair the incomplete samples. This method is improved
based on the Snapshot POD, and the data can be completed by the least square method or
iterative prediction.

2.2. Snapshot POD

The Snapshot POD method uses the linear combination of the original space function
elements to represent the eigenmodes, and the order of the autocorrelation matrix is equal
to the number of snapshots, which improves the solution efficiency. This method is also
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suitable for solving the problem that the matrix is difficult or impossible to solve, because
the number of spatial points is more than the number of samplings points [21].

Construct the matrix U from the acquired target field data of n time nodes, then:

U =
[
u1 u2 u3 . . . un

]
(6)

where u is the target field changing with time u(x, t):

u(x, t) =
N

∑
i=1

ai(t)Φi(x) (7)

To compute the POD basis, first compute the autocovariance matrix of the target field:

C = UTU (8)

Then, solve for the eigenvalues:

CAi = λi Ai (9)

Then, arrange the modes according to the eigenvalues λ from large to small to obtain
the main modes:

λ1 > λ2 > λ3 > . . . > λN = 0 (10)

The POD mode can be constructed to obtain the time coefficient. If the flow field is
regarded as the superposition of the basic flow and the flow field pulsation, it is necessary
to remove the matrix formed by the time average value from the obtained sample matrix
and to calculate the pulsation matrix and the correlation matrix with its eigenvalues and
eigenvectors.

Due to the limitations of the principle of the Snapshot POD, the accuracy of the
data acquisition and flow field reconstruction from this method depends on the collected
snapshot samples, so the samples are required to cover a wide range of research objects [22].
In terms of usage, the Classic POD method is mainly used to analyze the correlation
between different research points in the instantaneous state, and the Snapshot POD method
often focuses on the correlation analysis of multiple images distributed over time at the
same location [23].

2.3. Gappy POD

The Gappy POD method can recover partially lost original data in various ways. The
following is a brief introduction to the Classic Gappy POD method [24].

For research with sample vector data loss, if the sample U number is n, then:

U =
[
U1 u2

]T (11)

Φ =
[
Φ1 Φ2

]
(12)

U1 =
n

∑
j=1

ajΦ
j (13)

Only one of them, u2, has data loss, and u2 is:

u2 =
[
u21 u22

]
(14)

In the formula, u22 is the missing data, and Φ1 and Φ2 are the POD base coefficients of
u21 and u22, respectively. Complementary data can be obtained by combining the singular
value calculation of the matrix U with the least square method. However, the POD base
coefficients obtained in this way have certain errors and are generally calculated in other
improved ways, such as through iterative prediction and completion [25].
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3. Research on Mode Decomposition Methods
3.1. Mode Decomposition in Aerodynamics

Mode decomposition in the study of the airfoil flow field is an important analytical
tool, which helps us to understand the complexity of aerodynamic problems and the
characteristics of airfoil flow. The role of modal decomposition is reflected in the following
four aspects:

Identifying and Classifying Modes: Mode decomposition can decompose complex
airfoil flow problems into simple fundamental modes, each corresponding to a unique
flow structure. By identifying and classifying these modes, we can more precisely de-
scribe different flow phenomena such as vortex structures, wakes, boundary layers, and
pressure distributions.

Modal Feature Extraction: Modal decomposition enables us to extract information
regarding key features from complex flow field data. Each mode represents an important
feature in the flow: for example, the cutoff mode can reflect in which frequency range the
main energy of the flow is concentrated. By analyzing these modes and the relative contri-
butions between them, we can better understand the dynamic properties of airfoil flow.

Flow Field Reconstruction and Prediction: Through modal decomposition, we can rep-
resent flow field variables as a linear combination of individual modes. This representation
can be used to reconstruct the entire flow field, allowing us to understand the details of the
flow in greater detail. In addition, the model based on modal decomposition can also be
used for the prediction and simulation of the flow field. Through controlling the evolution
of the modal, we can predict the flow response under different operating conditions, which
is of great significance for optimizing the design and performance of the airfoil.

Physical Mechanism Explanation: Modal decomposition provides us with a physical
mechanism explanation of airfoil flow. By analyzing the amplitude and phase of each
mode, as well as the interaction between modes, we can reveal various mechanisms in the
flow, such as vortex–vortex interactions, the coupling of pressure distributions, boundary
layer development, etc. The explanation of this physical mechanism contributes to a deeper
understanding of the airfoil flow and provides guidance for improving airfoil design and
optimizing flow control.

In summary, modal decomposition plays a vital role in the study of airfoil flow
fields. It can not only help us to identify and classify flow structures, extract feature
information, and reconstruct flow fields and predict flow responses but it can also reveal
the physical mechanism of the flow and promote the further development of airfoil design
and flow control.

3.1.1. Research on Modal Decomposition in Aerodynamics

At present, hypersonic vehicles are in a period of vigorous development at home
and abroad, and the optimization and design of the aerodynamic characteristics of the
aircraft airfoil cannot be separated from the CFD numerical calculation. Nie Chunsheng
et al. [26] took the shape of the Hermes aircraft as the research object, obtained a three-
dimensional thermal environment database using the CFD numerical method, and used
the POD method to reduce the CFD database. Combining the POD method and RBF
interpolation, a suitable complex thermal environment database was established. The
surrogate model (Surrogate Model, SM) for predicting the heat flow on the shape surface
can quickly predict the surface thermal environment parameters that meet the accuracy
requirements in an unknown state. On the premise of not losing prediction accuracy, this
method can greatly improve the calculation efficiency and effectively make up for the
shortcomings of engineering algorithms. Sun Chong et al. [27] carried out a numerical
simulation on the static stall and dynamic stall of the S809 airfoil at an angle of attack of
20◦. They studied the unsteady flow field around the wing and extracted the static stall
and dynamic stall unsteady flow field by using the POD method. The main flow modes of
the pressure field were combined with the POD coefficients of the corresponding modes to
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analyze the unsteady flow, which is of great significance to the study of the stall problem of
the wind turbine airfoil. Figure 2 [26,28] shows that research on POD in aerodynamics.
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Yang [29] established a model based on the B737-200 aircraft cockpit and carried out
research on the flow field characteristics in the aircraft cockpit under different air supply
conditions. The influence of flow field characteristics on pollutant transmission was ana-
lyzed. Li Bo et al. [30] also proposed an efficient adaptive sequential optimization method
based on the POD surrogate model and compared and analyzed the two-dimensional airfoil
design optimization. It was found that this method can significantly improve the optimiza-
tion efficiency and has a higher speed. Compared with the time-consuming calculation of
the CFD, the calculation amount of the whole calculation process is also very small, which
provides an effective solution for the fitting or optimization of the field volume data. Arash
Mohammadi et al. [28] applied the POD method to uncertainty quantification (Uncertainty
Quantification, UQ) analysis, combined the POD method with Compressed Sensing (Com-
pressed Sensing, CS), and applied this method to the RAE2822 airfoil designed by NASA.
In the UQ analysis of the CFD simulation of the transonic turbulent flow field around the
rotor, the computational cost was significantly reduced.

3.1.2. Application of Mode Decomposition in Aerodynamics

Liu Zhao et al. [31] established the aerodynamic model of wake excitation under the
conditions of periodic variation and sinusoidal variation pressure and proved that the
error between the CFD calculation results and the reduced order model obtained by the
POD method was very small. Liu Nan et al. [32] chose the POD–Kriging model, combined
with the constraint processing method, to reconstruct the aerodynamic shape design space,
which also improved the design efficiency while ensuring a high accuracy. The POD
method was applied to the study of the temporal–spatial evolution of the supersonic
mixing layer under different working conditions to obtain the energy modal distribution,
the time evolution characteristics, and the frequency domain characteristics of the modal
coefficients, as well as the modal space structure [33]. Carlos Quesada et al. [34], for the
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first time, used the POD dimensionality reduction technique to predict the deformation
of microcapsules flowing through straight microfluidic channels in a steady state. Zhang
Yang [35] used the POD and DMD methods to compare the unsteady characteristics in the
study of the high angle of attack flow of an aircraft and found that the POD mode contains
movements of multiple frequencies and that the more dominant the POD, the greater the
energy contained in the mode. The flow field reconstruction efficiency was higher, and the
main feature of the motion extracted by the DMD mode was a single-frequency mode. Each
mode was more stable. Figure 3 [33,34] shows that application on POD in aerodynamics.
Table 1 shows the study of mode decomposition in aerodynamics.
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Table 1. The study of mode decomposition in aerodynamics.

Authors Research Contents and
Applications Methods

Nie Chunsheng [26]
Using the POD method to reduce
the order of the CFD 3D thermal

environment database

POD method and RBF proxy
model

Sun Chong [27]

Extraction of main features of
static stall and dynamic stall for
unsteady flow field around the
airfoil using the POD method

POD method

Arash Mohammadi [28] UQ Analysis of transonic
turbulent flow field

UQ analysis, compressed
sensing, and the POD method

Pei Chunbo [29]

Analysis of the flow
characteristics in an aircraft’s
interior cabin under different

working conditions

POD method
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Table 1. Cont.

Authors Research Contents and
Applications Methods

Li Bo [30] Optimized for 2D airfoil design POD method and intelligent
optimization algorithm

Liu Zhao [31] Comparing CFD results with
POD results POD method

Liu Nan [32] Aerodynamic shape design
optimization POD–Kriging method

Carlos Quesada [34]
Deformation during steady state

flow through a straight
microfluidic channel

POD method and small-scale
numerical calculation method

Zhang Yang [35]
Comparison of POD and DMD at

a high angle of attack of the
aircraft

POD method and DMD
method

3.2. Mode Decomposition in Hydrodynamics

CFD (computational fluid dynamics) are widely used in the calculation of various
flow fields because of their high calculation accuracy and few restrictions [36], but they
also have the disadvantage of a long calculation time. In the practical application of CFD,
if the research or experiment requires multiple iterations, the choice of the CFD method
can lead to a large amount of calculations, resulting in significant requirements for the
performance of the computer [37]. Moreover, if the data acquisition is only based on CFD
or basic experimental flow field analysis, the data information components can be very
complicated, the physical characteristics of the flow field cannot be obtained, and it is even
more difficult to determine the flow field characteristics that mainly affect the flow state
change in the flow field. Modal decomposition can reduce the dimensions of the calculation,
extract the main features, and reduce data redundancy. Through modal decomposition, the
complex flow field can be decomposed into basic modes. The independent calculation of
each mode is an effective method to improve the efficiency of the CFD analysis.

3.2.1. Research on Mode Decomposition in Hydrodynamics

Jia Xuyi et al. [38] identified a fast calculation method of the flow field based on
intrinsic orthogonal decomposition. A backpropagation neural network was proposed. In
the construction of the POD and BPNN models, partition and cluster sampling strategies
were introduced to improve the modeling efficiency and to reduce the time-consuming
model training, respectively. The results of the steady flow field case of the variable
geometry airfoil show that, in the case of subsonic speed, the trained model can guarantee
the prediction accuracy of the isobar, the airfoil pressure coefficient, and other information
in the flow field. The average prediction error of the lift–drag coefficient was 0.4%. In the
case of transonic velocity, the average prediction error of the lift–drag coefficient of the
model obtained from the training was within 1.4%, and the shock wave position was also
predicted more accurately, according to Li Dali et al. [39]. Optimized calculations with
structural grids also simplify the mathematical model by constructing a reduced order
model (ROM) of the unsteady flow field. The POD is used to calculate the orthogonal basis
with the smallest error in the function space—the optimal orthogonal basis—and to project
the original high-dimensional flow field data to the low-order vector space through the
optimal orthogonal basis. The flow field can be transformed according to the difference
in energy, which is decomposed into various modes, so that the original target flow field
can be expressed in several dimensions in an approximate manner. Its eigenvalues can
represent the energy of the corresponding POD mode while retaining its main features
and flow structure [40]. When using the POD method to process the data, L. Lathauwer
et al. [41] found that, when the singular value decomposition method is used to decompose
the eigenvalues, its calculation efficiency is higher than that of the traditional calculation
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method, and more accurate high-order modes can be obtained. The intrinsic orthogonal
decomposition method has high calculation efficiency and better accuracy.

3.2.2. Mode Decomposition and Reconstruction, and the PIV Experiment
in Hydrodynamics

Wang Zangang [42] used the POD method to analyze the flow field around a two-
dimensional square column under low Reynolds number conditions and found that the
energy of the first four POD modes accounted for more than 99%. The main low-order
modes in the POD contain higher energy, which facilitates a faster reconstruction of the flow
field [43]. Shady E. Ahmed et al. [44] clearly showed the dominant structure of the original
flow field after denoising through the flow field reconstructed by the POD. The purpose
of the POD low-dimensional reconstruction of the flow field was to study the nature of
the flow field without interference from small-scale eddies. Zhang Zhengchuan et al. [45]
took the centrifugal pump as an example to explore the transient flow field inside the
centrifugal pump and verified that the low-order POD mode represents the low-frequency,
large-scale flow in the flow field, which contains high energy and can show the main flow
characteristics. High-order modes correspond to high-frequency, small-scale flows with
low energy, and, with the gradual increase of the POD mode order, the corresponding flow
structures also show complex characteristics. Fu Jue et al. [46] explored the unsteady flow
of the blade tip clearance flow field in the near-stall state, adopted the POD method to
analyze the flow field flow and to reconstruct the flow field, and found that the first-order
POD mode can restore the flow field. They discovered that the main features of the flow
field were that, with the increase of the POD modal order, the reconstructed flow field was
closer to the actual flow field, and the details in the flow field were expressed more clearly
and accurately.

Qin Hao et al. [47] used the POD method to decompose the transient velocity field
of the flow field around the column at a large Reynolds number obtained by the particle
image velocimetry technique (PIV) and recalculated the flow field based on the first six
modes of the POD mode. The experiment shows that the first six modes indicate the main
characteristics of the flow field, and the flow field can be reconstructed more accurately.
Bi et al. [48] used stereovision and PIV technology to identify the trajectory and flow field
characteristics of a free-falling annular disk and extracted the coherent structure of the
wake behind the disk with the POD method. Through decomposing the flow field into
the different POD modes, they clarified the reason the HH (Hula-Hoop) motion and the
HM (Helical Motion) motion [49] are different. S. Kumar et al. [50] used Laser Doppler
Velocimetry (Laser Doppler Velocimetry, LDV) and PIV Technology. The flow field in the
draft tube of the Francis turbine model was studied, and the POD method was used to
analyze 250 particle image snapshots, including both axial and radial snapshots. Song
Yuchen et al. [51] used a time-resolved tomo-PIV to study the non-uniform flow above the
reactor coolant pump. The three-dimensional velocity and pressure of the non-uniform
inflow were reconstructed with a time-resolved tomographic particle image velocimetry
to evaluate its effect on the RCP. Figure 4 shows that there are two large-scale vortices in
the non-uniform inflow below the SG, and the size of the small-scale turbulent vortices
decreases with the flow rate. Large-scale vortices exist in the form of alternating counter-
rotating pair vortices (M–M vortices). The pressure field reconstructed from the three-
dimensional velocity of the POD was used to study the influence of the non-uniform inflow
of the RCP. The first 412 modes occupy 90% of the energy region. Table 2 shows the study
of mode decomposition in hydrodynamics.
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Figure 4. (a) Circumferential non-uniform velocity field of case 1 and 3d geometrical model; (b) the
3D vector at the plane of y1/D; (c) the 3D vector at the plane of y2/D; and (d) the spatial distribution
of the POD modes in R1 for cases 1 [51].
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Table 2. Study of mode decomposition in hydrodynamics.

Authors Research Contents and
Applications Methods

Li Dali [39] Structural grid optimization
calculation

ROM reduction model and
POD method

Wang Zanggang [42]
Analysis of flow around

two-dimensional square column
by POD method

POD method

Shady E. Ahmed [44] POD reconstructs the original
flow field after denoising POD method

Qin Hao [47]

Transient velocity field of flow
around a column under large
Reynolds number obtained by

POD decomposition of PIV

POD method and PIV
technology

Song Yuchen [51]
Hydrodynamics characteristics of

non-uniform inflow in RCP by
POD and PIV

POD method and PIV
technology

3.3. Mode Decomposition Methods in Other Fields

POD also has other types of deformation and development, such as SPOD, BPOD,
MSM, etc. [52]. With the deepening of research and changes in actual needs, the pure POD
method is not enough to achieve the purposes of research or application. Interdisciplinary
and cross-field engineering and projects have put forward higher requirements for research
methods. The POD agent model is in this context. It is one of the products produced in the
environment of traditional classic proxy models, which include the radial basis function
model (RBF), the polynomial response surface model (PRS), the artificial neural network
(ANN), the Kriging model (KRG), etc. [53]. They can simplify the difficulty of solving in
the face of numerical calculation and simulation with a huge amount of data. However, the
traditional proxy model only considers the relationship between scalar data and ignores
the data related to the characteristics of the flow field itself. Therefore, the traditional proxy
model does not have the ability to describe the complete flow field.

3.3.1. Mode Decomposition in Nonlinear Vibration Systems

The POD surrogate model combines system identification and smooth feature extrac-
tion methods, can comprehensively consider the data of the flow field without modeling all
data points, and further improves the calculation efficiency on the basis of the traditional
surrogate model. Li Bo et al. [30] verified and analyzed the accuracy of the POD proxy
model, calculated the POD proxy model under different basis function orders, and used
the energy information capacity to represent the accuracy. They found that the accuracy of
the POD proxy model was higher than that of the proxy model, and the calculation time
was shorter than the traditional direct optimization method. Zhang Lingfeng et al. [54]
combined the POD, CB, and ROM to obtain the reduced order model (PCB-ROM) of the
overall structure, which can correctly reflect the change of the flow field caused by the
change of some parameters and greatly improve the calculation efficiency. Mei Guan-
hua et al. [55] used the POD-ROM corresponding to chaos to analyze the flutter of the
two-dimensional wall panels. The calculation accuracy of this method is very close to
that of the traditional method, but it has a higher calculation efficiency. Li Kui et al. [56]
modeled the stratospheric wind field in Changsha based on the POD and found that the
energy of the first five modes accounted for 98.9% of the total energy. Multidisciplinary
integration is the source of innovation. The POD method is also widely used in structural
dynamics. In the early 21st century, the POD method was gradually applied to structural
dynamic systems. Deng Zichen et al. [57] first established the dynamic equation of a
flexible cantilever beam impact system based on the Euler–Bernoulli principle and then
successfully applied the POD method to the order reduction process of the impact system.
Numerical results show that the method is feasible and has a high efficiency, which lays
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a foundation for the study of system control. In 2020, Zhao Yang et al. [58] proposed a
new model reduction method for the beam structure dynamic model. The purpose of
greatly reducing the number of degrees of freedom is achieved by reducing the basis vector.
Lu Kuan et al. [59] improved the traditional POD method based on the inertial manifold
theory, perfected the transient POD method, and proposed the method of determining
the optimal dimensionality reduction model of the original high-dimensional complex
system based on the physical meaning of the transient POD method. The improved POD
method is used to reduce the dimensions of the original rotor-bearing system. Through a
comparison of the phase diagram, the axis trajectory, the amplitude–frequency curve, and
bifurcation characteristics before and after the dimension reduction, it was found that the
simplified model after dimension reduction retains the original model well, including the
dynamic characteristics. Li Yuwei et al. [60] obtained the node displacement field of the
grid-stiffened shell model through static analysis and assembled it into a snapshot matrix
and then used the POD technology to extract the principal components of the snapshot
matrix as the transformation matrix. In order to achieve a realized model reduction, the
POD method has also been used to study the dynamic order reduction problem of the
cantilever plate geometric nonlinear structure, which can improve the solution efficiency
of structural nonlinear dynamic systems under the condition of large geometric deforma-
tion [61]. Li [62] proposed a hybrid reduced order model combining the POD method
and discrete empirical interpolation method (Discrete Empirical Interpolation Method,
DEIM), which is used to accelerate the simulation of a single-phase compressible gas flow
in porous media in petroleum engineering. The reconstruction, prediction accuracy, and
calculation speed of the POD-DEIM method have been verified via examples. Subsequently,
Chutipong Dechanubeksa et al. [63] continued to optimize this method and introduced
a DEIM correction method based on the concept of GPOD (Gappy Proper Orthogonal
Decomposition) [64], called the POD-GPOD method. This method takes into account the
accuracy of the POD method and the efficiency of the POD-DEIM method. Figure 5 shows
that the POD and DMD methods in other fields [61,65,66].
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The POD method combined with wavelet transforms can accurately locate the dam-
aged part of the steel frame, and this method can detect the damage of the bending moment
connection within an acceptable range of accuracy [66].

3.3.2. Mode Decomposition in Machine Learning

Wei Yun [67] proposed for the first time to embed genetic algorithms and the adjoint
method in the POD method, completed the multi-method integrated design of the artifi-
cial environment, improved the calculation efficiency of the reverse design on the basis
of ensuring calculation accuracy, and realized the artificial environment based on CFD.
Efficient global optimization reverse design, based on the POD method, can establish a
fast ice shape prediction reduction model [68]. This method can be applied to single- and
multi-parameter ice shape predictions and has a reference value for the application of large
parameter research. It provides an effective and feasible method for icing flight test certifi-
cations and ice-accommodating designs. The POD method is applied to the space–time
evolution of supersonic mixed layers under different operating conditions to obtain the
time evolution characteristics of the energy modal distribution, as well as modal coefficients,
frequency domain characteristics, and the modal space structure [69]. Lv Xiaolong et al. [70]
established a POD-RBF proxy model with a good inversion accuracy and generalization
performance, and a fast iterative update inversion algorithm, using the POD method to
extract the intrinsic vector and the RBF method to interpolate to obtain the surrogate model
of the finite element model. At the same time, a new high-efficiency iterative inversion
method can be established by combining the global optimization ability of the particle
swarm algorithm and the fast local convergence advantages of the Gauss–Newton method.
Ahmed Rageh et al. [71] further improved the POD-ANN method in order to study the
fatigue and corrosion defects of rivet joints, combining the POD mode extracted from the
measured structural response and the orthogonal mode calculated from the numerical
model. As a result, the POD-ANN method is a robust fatigue damage identification tool
for railway steel bridges. Figure 6 shows the POD-ANN field investigation flowchart.

Staf Roels et al. [72] used the POD method and the Proper Generalized Decomposition
(PGD) method to study the heat transfer phenomenon of large-scale masonry walls, and
the results showed that the POD method can provide more accurate results. Chinchun Ooi
et al. [73] combined several machine learning models with the POD method to obtain the
classic result of simulating the flow around a stationary cylinder. The method first calculates
the POD or DMD mode and the time coefficient of the simulated data (with a snapshot),
and then uses the long short-term memory network (Long Short-Term Memory, LSTM)
model to predict the time coefficient of the mode [74]. Experiments show that the model
has a high accuracy for predicting the time coefficients of snapshots of Kelvin–Helmholtz
instabilities and mass diffusion problems. Steffen Kastian et al. [75] proposed the adaptive
POD method (APOD), which introduced the principle of selecting snapshot subbases for
constructing matching bases, which can give more accurate approximations.
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3.4. Dynamic Mode Decomposition and the Order Reduction Model

The use of POD alone is not enough to support the construction of a flow field model to
analyze the change of the flow field. It needs to be combined with other methods to establish
a model based on the modal after POD processing, such as the POD-Galerkin method
mentioned above. This is a dimensionality reduction model. The eigenvalues of each mode
of the DMD can represent the change of the flow field flow, and the main characteristics of
the flow field in time and space can be obtained at the same time. Modal stability analysis
is also one of the unique features of DMD compared to POD [12]. In addition, the modes
obtained after the POD calculation include flows of various frequencies, which are very
complicated when analyzing physical phenomena. This is not conducive to the dynamic
analysis of the flow field. For example, when studying transonic buffeting, the POD method
is likely to ignore the flow field. Those components with a dominant frequency but low
energy have a negative impact on the flow field analysis and reconstruction [76]. Different
modes of DMD have different frequencies, and each mode has only a single frequency,
which is convenient for analyzing the flow characteristics of the flow field at different
frequencies [64].

3.4.1. DMD Method

The following is a brief introduction to DMD with the approximate matrix method as
an example [77].

Assuming that there are n snapshots or data samples arranged in time through exper-
iments or data simulations, the time interval between two adjacent snapshots is ∆t, and
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the data obtained by n snapshots are each a column vector xi, a data set can be obtained
as follows:

{x1, x2, x3, . . . , xn} (15)

When the number of snapshots is sufficient, the rank of the above matrix will remain
unchanged. At this time, there is the following:

xi+1 = Axi (16)

where A is the system matrix of the high-dimensional flow field, also known as the mapping
matrix. Then, the data in the data set is divided into two sets containing n − 1 data. These
are as follows:

Xk−1
1 = [x1, x2, x3, · · · , xk−1] (17)

Xk
2 = [x2, x3, x4, · · · , xk] (18)

Xk
2 = AXk−1

1 (19)

Since Xk−1
1 , Xk

2 is not a square matrix, and the dimension of A is high, A cannot be

obtained directly. As a result, it is necessary to obtain an approximate matrix for
∼
A and, at

the same time, use Xk−1
1 to carry out a singular value decomposition, with the result that:

Xk−1
1 = USVH (20)

A = U
∼
AUH = UHXk

2VS−1 (21)

Therefore, the DMD mode and its corresponding mode coefficient can be obtained
as follows:

Φ = Xk
2VS−1W (22)

b = Φ−1 · x1 (23)

The above formula shows that the mode coefficient can show the influence degree of
the mode in the flow field.

DMD can perform modal stability analysis. The calculation method is to obtain the
magnification and frequency of the mode by approximating the eigenvalues corresponding
to each eigenvector of the matrix, where the real part represents the magnification and the
imaginary part represents the frequency. If the magnification is negative, it means that
the mode is stable; otherwise, it corresponds to an unstable mode. If the magnification
is zero, it means that the mode is a periodic mode [78]. In addition, the modal stability
can also be judged by the distribution of the eigenvalues on the unit circle [79]. Among
them, the horizontal axis represents the real part of the eigenvalue, and the vertical axis
represents the imaginary part of the eigenvalue. If the point of the eigenvalue is outside
the unit circle, it means that the magnification is positive; otherwise, it is negative. If the
point is on the unit circle, it means that the magnification is zero. DMD has been applied in
many fields by virtue of its excellent characteristics, but it still has great mining potential.
Furthermore, various deformation and improvement methods have appeared, such as
sparsely enhanced DMD (SPDMD, sparsity-promoting DMD), adaptive non-uniform sam-
pling DMD (NU-DMD, non-uniform DMD), optimal mode decomposition OMD (optimal
mode decomposition), etc. [80].

3.4.2. Mode Decomposition and the Order Reduction Model

The ROM model provides a way of thinking. This model can express most of the flow
field characteristics in the high-dimensional unsteady flow field while ensuring that the
precision is reduced for modeling, reducing the time consumed by the calculation and
the memory occupied. This reduced order model is mainly divided into two categories,
including the ROM method for the system identification method development and the



Symmetry 2024, 16, 155 17 of 22

ROM method for the flow field feature extraction. The former includes the ARX model,
the Vikterra series method, and the neural network model [81]. Although the input
and output relationship of the target system can be obtained, the essence of the system
cannot be analyzed. In the latter, intrinsic orthogonal decomposition (proper orthogonal
decomposition) and dynamic mode decomposition are two commonly used methods,
namely POD and DMD [82]. Figure 7 shows mode decomposition and the order reduction
model in hydrodynamics [76,82].

Symmetry 2024, 16, x FOR PEER REVIEW 17 of 22 
 

 

 
Figure 7. Modal decomposition technique in hydrodynamics [76,82]. 

Luo Jie et al. [83] took the flow around a two-dimensional cylinder as an example to 
verify the feasibility of the DMD analysis of unsteady flow fields. The base flow mode, the 
low-frequency convective dominant mode, and the high-frequency oscillation dominant 
mode under the limit cycle were extracted. It was revealed that the limit cycle state of the 
flow around a cylinder is formed by the superposition of the base flow state, the low-
frequency convection state, and the high-frequency oscillation state. Ye Kun et al. [84] an-
alyzed the Karman vortex street around a cylinder with the POD and DMD methods, 
found that the DMD method can accurately extract the main vortex structure and more 
high-order harmonic modes, and then obtained the characteristics of the substructure in 
time and space as orthogonal to each other. The main characteristics of the flow field in 
time and space can be obtained, and the stability of its extracted mode can also be ana-
lyzed. Williams MO et al. [85,86] studied the correction of the DMD method around the 
flow field when the Nyquist sampling theorem was not satisfied. The corrected DMD 
method can repair the missing flow field information within 5% to complete the analysis. 
For a special kind of flow field around a sphere, Williams MO also adopted the nuclear 
method to compare and analyze the information contained in the flow field and compared 
it with the flow field that was decomposed and reconstructed by the DMD method. 
Through the Koopman spectrum analysis method, it was found that the DMD method can 
be effective. Each mode expresses different characteristics of the flow field. Ponitz B et al. 
[87] used the PIV method to measure the evolution of the vortex ring within a certain 
period of time, used DMD to post-process the PIV time-resolved 3D data obtained in the 
experiment, and reconstructed the secondary structure of the vortex ring through the Q 
criterion. They found that the vortex ring and the core have azimuthal instability, and the 
vortex core grows gradually when the vortex ring n = 6. 

DMD can quickly extract the main structure of the flow field, which is convenient for 
understanding the characteristics of the flow field and reconstructing the flow field. Sun 
Guoyong et al. [88] used DMD to reconstruct the two-dimensional flow field around the 
cylinder, and the error was less than 10ିଵ. However, for a more complex flow system, 
before using DMD to decompose the flow field, the complexity of the flow field should be 
analyzed to determine the amount of data to be obtained, to reduce errors, and to avoid 

Figure 7. Modal decomposition technique in hydrodynamics [76,82].

Luo Jie et al. [83] took the flow around a two-dimensional cylinder as an example to
verify the feasibility of the DMD analysis of unsteady flow fields. The base flow mode, the
low-frequency convective dominant mode, and the high-frequency oscillation dominant
mode under the limit cycle were extracted. It was revealed that the limit cycle state of
the flow around a cylinder is formed by the superposition of the base flow state, the low-
frequency convection state, and the high-frequency oscillation state. Ye Kun et al. [84]
analyzed the Karman vortex street around a cylinder with the POD and DMD methods,
found that the DMD method can accurately extract the main vortex structure and more
high-order harmonic modes, and then obtained the characteristics of the substructure in
time and space as orthogonal to each other. The main characteristics of the flow field in
time and space can be obtained, and the stability of its extracted mode can also be analyzed.
Williams MO et al. [85,86] studied the correction of the DMD method around the flow
field when the Nyquist sampling theorem was not satisfied. The corrected DMD method
can repair the missing flow field information within 5% to complete the analysis. For a
special kind of flow field around a sphere, Williams MO also adopted the nuclear method
to compare and analyze the information contained in the flow field and compared it with
the flow field that was decomposed and reconstructed by the DMD method. Through the
Koopman spectrum analysis method, it was found that the DMD method can be effective.
Each mode expresses different characteristics of the flow field. Ponitz B et al. [87] used the
PIV method to measure the evolution of the vortex ring within a certain period of time,
used DMD to post-process the PIV time-resolved 3D data obtained in the experiment, and
reconstructed the secondary structure of the vortex ring through the Q criterion. They
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found that the vortex ring and the core have azimuthal instability, and the vortex core
grows gradually when the vortex ring n = 6.

DMD can quickly extract the main structure of the flow field, which is convenient for
understanding the characteristics of the flow field and reconstructing the flow field. Sun
Guoyong et al. [88] used DMD to reconstruct the two-dimensional flow field around the
cylinder, and the error was less than 10−10. However, for a more complex flow system,
before using DMD to decompose the flow field, the complexity of the flow field should be
analyzed to determine the amount of data to be obtained, to reduce errors, and to avoid
distortion when reconstructing the flow field [89]. DMD can also be used for flow field
predictions. The prediction error for a periodic flow field is only 10−4 [90], and DMD
can predict the periodic flow field at any time. For the sampling interval of the unsteady
flow field, the model constructed by the DMD method can predict the flow field within a
certain period of time, but the error will increase with the enhancement of the nonlinear
characteristics of the flow field [91].

4. The Future of Modal Decomposition

Mode decomposition has prospects for a wide application. On the one hand, modal
decomposition has been applied to the aerodynamic simulation and control of aircraft
and automobiles and in other fields, providing important support for the correspond-
ing design and optimization. On the other hand, with the continuous development of
computer hardware and algorithms, the computational cost of modal decomposition will
become affordable, and it can be applied to more complex and large-scale flow simulations
and controls.

4.1. Research Value and Advantages of Modal Decomposition

Modal decomposition should be explored in the following aspects. The first is to
further improve the accuracy and reliability of modal decomposition and to reduce subjec-
tivity and uncertainty. The second is to explore new modal decomposition methods, such
as modal decomposition based on deep learning, to improve the efficiency and accuracy of
modal decomposition. The third is to combine modal decomposition with other numerical
simulation methods, such as multi-grid GPU programming and computing, etc., to achieve
more efficient flow control and optimization in practical applications. As future engineering
structural systems become more and more complex and nonlinear factors are coupled with
each other, many simplified models are no longer used. Areas worthy of future attention
include the following:

First, combined with the characteristics of each dimensionality reduction method,
the second dimensionality reduction is performed on the high-dimensional system. The
LS method can retain the topological properties of the original system. Therefore, the
high-dimensional complex system can be reduced first by the POD method, and then by
the LS method. Research into further dimensionality reductions not only maintains the
convergence of the decomposition but also saves computing memory, which is very suitable
for analyzing large data sets and is meaningful to any numerical research field.

Secondly, with the development of artificial intelligence, the intersection of machine
learning and other disciplines, as well as efficient data processing methods, represents
new trends. Machine learning requires a large amount of data for training, but its learning
process relies on efficient methods of analysis for expressing features. The POD has
advantages for processing data-driven machine learning.

Finally, most of the major breakthroughs and major innovations at the forefront of the
disciplines are the result of interdisciplinary fusion and convergence. The intersection of the
POD method and artificial intelligence fields, such as data-driven and deep learning, can
make the POD method more widely used and more efficient in dimensionality reduction.
For example, through using the POD method to reduce the dimension of nonlinear systems,
using the POD method combined with wavelet transforms to identify damage and faults,
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using the POD method embedded in artificial intelligence algorithms to achieve reverse
design, etc., the POD method has broad prospects in interdisciplinary fields.

4.2. Future Prospects for Mode Decomposition

Mode decomposition in fluid mechanics involves the decomposition of a complex
flow field into some simple eigenmodes, in order to better understand and control the flow.
Although modal decomposition has been widely used in the field of fluid mechanics, there
are still some deficiencies.

First, the results of modal decomposition usually have a certain subjectivity and
uncertainty. The parameters such as the basis function and the cut-off threshold selected
for modal decomposition have a great influence on the results, so experience and thorough
parameter study are needed to select appropriate parameters. In addition, due to the
nonlinearity and complexity of the flow, the results of the modal decomposition may not
be unique.

Second, modal decomposition cannot fully represent all the characteristics of the flow.
Mode decomposition can only capture some important eigenmodes, but it cannot fully
reflect all the information of the flow. Therefore, other factors and characteristics still need
to be considered when simulating and controlling the flow.

Finally, modal decomposition is computationally expensive. In large-scale flow sim-
ulations and controls, modal decomposition requires a lot of computation and storage,
resulting in a high computational cost. Therefore, in practical applications, it is necessary
to balance the calculation cost of the modal decomposition and the requirement for results
and to find a suitable balance point.
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