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a b s t r a c t

The gas dynamics under external force field is essentially associated with multiple scale nature due to the
large variations of density and local Knudsen number. Single scale governing equations, such as the
Boltzmann and Navier-Stokes equations, are valid in their respective modeling scales. Without identify-
ing a physical scale between the above two limits for the modeling of the flow motion, it is challenging to
develop a multiple scale method to capture non-equilibrium flow physics seamlessly across all regimes.
Based on the modeling scale of cell size and implementing conservation laws directly in a discretized
space, a well-balanced unified gas-kinetic scheme (UGKS) for multiscale gaseous flow has been con-
structed and used in the study of non-equilibrium flow and heat transport under external force field.
In this paper, static heat conduction problems under external force field in different flow regimes are
quantitatively investigated. In the lid-driven cavity case, the stratified flow is observed under external
force field. With the increment of external force, the flow topological structure changes dramatically,
and the temperature gradient, shearing stress, and external force play different roles in the determination
of the total heat flux in different layers corresponding to different flow regimes. As a typical non-Fourier’s
heat conduction phenomena in the transition regime, the external force enhances the heat flux signifi-
cantly along the forcing direction, with the relationship q!force / /

!
, where q!force is the force-induced heat

flux and /
!

is the external force acceleration. This relationship is valid in all flow regimes with non-
vanishing viscosity coefficient or the limited length of particle mean free path. Both theoretical analysis
and numerical experiments are used to show the important role of external force on non-equilibrium
heat transfer.

� 2018 Elsevier Ltd. All rights reserved.
1. Introduction

The gas dynamics under external force field is usually associ-
ated with multiple scale nature due to the possible large variation
of gas density and local Knudsen number along the direction of
force. On mesoscopic level, the kinetic theory could be employed
to illustrate the physical effect of external force. In the kinetic
scale, the Boltzmann equation follows the evolution of velocity dis-
tribution function f ðxi; t;uiÞ to describe the particle transport and
collision assembly. With an external forcing acceleration /i acting
on the particles, the evolving process of f is modeled in Eq. (1) with
separate operators: the free flight of the particles (left hand terms)
and their collisions (right hand term), i.e.,
@f
@t

þ ui
@f
@xi

þ /i
@f
@ui

¼ Qðf Þ: ð1Þ

Here ui is the particle velocity and Qðf Þ is the collision term. For a
real gas dynamic system, even with an initial Maxwellian of a baro-
metric distribution under external force, the free transport of parti-
cles between two successive collisions always evolves the system
towards to a non-equilibrium state. Under external force field, the
particle acceleration or deceleration process during this time inter-
val results in a distortion of the distribution function in the velocity
space. The deviation from equilibrium distribution is restricted by
the particle collision time s. On the other hand, the particle collision
takes effect to push the system back towards equilibrium state. In
continuum flow, the deviation from equilibrium is weak due to
intensive intermolecular collisions, and thus the non-equilibrium
transport is well described with viscosity and heat conductivity in
the constitutive relationship. However, in transition and rarefied
regime, the particle free transport and collision are loosely coupled
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due to a large particle collision time. Much complicated nonlinear
dynamics due to external force on the movement of particles
between collisions can emerge and present a peculiar non-
conventional energy or heat conduction transport phenomena. The
strong non-equilibrium effects are expected in an even highly dissi-
pative regions, such as the shock and boundary layers. To investigate
the heat conduction problem under the existence of external force
field is important to understand the dissipative flow physics.

It is noted that there is only limited study on non-equilibrium
flow under external force field [1,2]. Generally, the existence of
external force field, such as gravity, introduces a characteristic
length scale H � kBT=m/ [3], where kB is the Boltzmann constant,
m is the particle mass and / is the magnitude of external forcing
acceleration. It denotes a length scale over which the force field
produces a significant effect on the gas evolution. For a gravita-
tional system on the Earth atmosphere H is of Oð103Þ meters, and
under laboratory condition or a micro-electro-mechanical system
(MEMS) with geometric characteristic length L, the relation
H � L holds naturally, and thus it is reasonable to omit the influ-
ence of external force effect. However, in the case where H is com-
parable to L, the effect of external force will appear. For a large-
scale system in stellar and planetary atmosphere, the force will
result in significant change of gas density, and so is the variation
of the particle mean free path and the local Knudsen number. Sim-
ilar cases may appear in small scale, but with large acceleration,
such as material interface with shock impingement. It is interest-
ing to study the multiple scale non-equilibrium transport under
external force filed.

The current existing governing equations for the gas dynamics,
such as the Boltzmann and Navier-Stokes, are constructed on their
respective modeling scales. For example, the Boltzmann equation
is defined on the particle mean free path and collision time. Only
on such a modeling scale, the particle transport and collision can
be separately formulated, and the solutions in other scales by
applying the Boltzmann equation is mainly due to accumulation
of flow dynamics in the mean free path and particle collision time
scale. The Navier-Stokes-Fourier (NSF) equations are constructed
to describe fluid motion and heat transfer on a macroscopic level
with limited number of flow variables. The fluid element is the fin-
est closed unit in the NS modeling, where intensive particle colli-
sions prevent particle penetration between adjacent fluid
elements. The successful applications of the NS and Boltzmann
equations are on their valid scales with a clear scale separation.
However, for a system under external force field, the flow physics
may vary continuously from the kinetic Boltzmannmodeling in the
upper rarefied layer to the hydrodynamic one in the lower dense
region. The continuous variation of characteristic scale length
should associate with a continuum spectrum of gas dynamics to
connect the Boltzmann and NS seamlessly. However, it is challeng-
ing to construct such a multiple scale governing equation with
flexible degrees of freedom to describe a scale-dependent dynam-
ics, such as a general equation to in all scales from kinetic to hydro-
dynamic ones. The mathematical derivation of extended
hydrodynamic equations will not be very successful if a modeling
scale is not specifically pointed out. Unfortunately, there is no a
clear physical scale for modeling between the Boltzmann and NS
limits.

For conventional research of gas dynamics, the modeling and
computation are handled separately. Once the governing equations
are given, the CFD method serves to get numerical solution of dif-
ferential equations, such as direct Boltzmann solver [4] for the
Boltzmann equation and Riemann solver [5] for macroscopic fluid
dynamic equations. Without valid multiple scale governing equa-
tions, the traditional CFD can be hardly used for solving multiple
scale flow problem. In order to construct a multiscale method,
the physics modeling is directly used in the construction of a
numerical algorithm. Based on the cell size and time step scales,
the corresponding discretized multiscale governing equations have
been constructed in the well-balanced unified gas-kinetic scheme
(UGKS) for flow problem under external force field [6–8]. Through
a coupled treatment of particle transport, collision, and external
forcing effect in the mesh size scale for the flux transport across
a cell interface, a cross-scale flow physics from kinetic particle
transport to hydrodynamic wave propagation has been incorpo-
rated in the scheme [9]. In the current work, the well-balanced
UGKS will be employed to investigate the non-equilibrium gas evo-
lution under external force field.

In this paper, the heat transfer in the lid-driven cavity flow is
used as a typical example for the study of non-equilibrium gas
dynamics under external force field with a large variation of gas
density. Even under such a simple geometry, the cavity flow dis-
plays complicated flow phenomena with multiple scale transport,
including shearing layers, eddies, secondary flows, heat transfer,
hydrodynamic instabilities, and laminar-turbulence transition,
etc [10]. Great efforts have been devoted to the study of the flow
physics in different flow regimes. In the continuum regime, the
cavity problem is a typical benchmark case for the validation of
numerical algorithms for the NS solutions [10–15]. In rarefied
regime, the direct simulation Monte Carlo (DSMC) [16] and Boltz-
mann solvers [17,18] provide the benchmark solutions. Naris et al.
[19] discretized a linearized BGK equation to investigate the rar-
efaction effect on the flow pattern and dynamics over the whole
range of the Knudsen number. Mizzi et al. [20] compared the sim-
ulation results from the Navier-Stokes-Fourier equations (NSF)
with slip boundary conditions and the DSMC results in a lid-
driven micro cavity case. John et al. [21] applied the DSMC, discov-
ered counter-gradient heat transport in the transition regime, and
investigated the dynamic effect from the expansion cooling and
viscous heating on the heat transport mechanism. In all previous
work, there is few study about the flow under external force field.
Due to the external force effect, the cavity flow becomes even more
complicated with its non-equilibrium multiple scale evolution. A
few new phenomena, including the connection between the heat
transfer and external force, and stratified flow of different regimes,
have been observed through this study.

This paper is organized as follows. The basic kinetic theory and
the analysis of external force on a gas dynamic system are pre-
sented in Section 2. Section 3 presents the numerical experiment
and discussion on the non-equilibrium flow and heat transfer
across different flow regimes. The last section is the conclusion.

2. Analysis on physical effect from external force

In the Chapman-Enskog expansion [22], the particle distribu-
tion function is expanded into series around the equilibrium state
with respect to a small factor �,

f ¼ f ð0Þ þ f ð1Þ�þ f ð2Þ�2 þ � � � ; ð2Þ
and different truncations correspond to different fluid dynamic
equations. With zeroth-order approximation, the distribution func-
tion stays in the exact Maxwellian, and the vanishing contribution
of collision operator Qðf Þ in Eq. (1) leads to the Euler equations [23],
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The notation dij is Kronecker’s delta, e is the internal energy and /i is
the external forcing acceleration.

Due to the complexity of the Boltzmann collision operator, here
we will use the BGK equation [24] to qualitatively demonstrate the
asymptotic expansion under external force field. In the BGK equa-
tion, the collision operator is replaced by a relaxation term, i.e.,

@f
@t

þ ui
@f
@xi

þ /i
@f
@ui

¼ fþ � f
s

: ð4Þ

Here s ¼ l=p is the collision time, where l is viscosity coefficient
and p is pressure. The Maxwellian distribution fþ for a monatomic
gas is

fþ ¼ q
k
p

� �3
2

e�k ðui�UiÞ2½ �; ð5Þ

where k ¼ m=2kBT with m the particle mass, kB the Boltzmann con-
stant. In the near-equilibrium region, the expansion in Eq. (2) is car-
ried out with respect to the particle collision time or its
corresponding Knudsen number, which can be written into the fol-
lowing successive form [25],

f ¼ fþ � s D
Dt

fþ þ s D
Dt

s D
Dt

fþ
� �

þ � � � ; ð6Þ

where D=Dt is the total derivative of both physical and velocity
space. For the first order truncation of Eq. (6) to the collision time
s, the distribution function f has the corresponding expansion form,

f ¼ fþ � sðfþt þ uif
þ
xi
þ /if

þ
ui
Þ þ Oðs2Þ: ð7Þ

The above derivatives in physical and velocity space can be
obtained by the chain rule from the Maxwellian distribution in
Eq. (5), i.e.,
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and the time derivatives are replaced by the spatial ones from the
following Euler equations,
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Substituting the expanded distribution function into the original
BGK equation and take conservative moments over velocity space,
the corresponding Navier-Stokes equations can be obtained,
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ð9Þ
The stress tensor Pij and heat flux qi are related to the non-vanishing
effect of particle collision time in the kinetic scale [26], i.e.,

Pij ¼ pdij � l @Ui

@xj
þ @Uj

@xi
� 2
3
@Uk

@xk
dij

� �
; qi ¼ �j @T

@xi
;

where l and j are the viscosity and thermal conductivity coeffi-
cients, which are proportional to s.

In the above Chapman-Enskog framework, the macroscopic
flow dynamics and heat transfer are connected to the particle
motion at kinetic level. In the first-order Euler Eqs. (8), only veloc-
ity is affected by external force field, and there are no contributions
to the thermodynamic variables, such as density and temperature.
In the steady Euler limit under a conservative force potential U,
where the potential is independent of time and molecular velocity,
the corresponding kinetic equation goes to

ui
@f
@xi

� @U
@xi

@f
@ui

¼ 0: ð10Þ

The general solution of Eq. (10) is

f ðxi;uiÞ ¼ FðUþ 1
2
uiuiÞ;

where F is an arbitrary function. In this solution, the temperature
becomes a constant multiplier for the function of ðUþ 1

2uiuiÞ
[27,28], and it shows an isothermal hydrostatic equilibrium flow,
which is also a solution of Eq. (3),

q ¼ qðxiÞ; U ¼ 0;
@p
@xi

¼ �q @U
@xi

:

For a constant gravitational acceleration /i ¼ �@U=@xi, the
corresponding solution is,

q ¼ q0 exp
/ixi
RT

� �
; u ¼ 0; p ¼ p0 exp

/ixi
RT

� �
; ð11Þ

where R is the gas constant. Since there is no macroscopic velocity
or its derivatives involved, the Euler and Navier-Stokes equations
will follow the same steady state solution in Eq. (11).

However, for the non-equilibrium gas dynamics with non-
vanishing particle mean free path and collision time, the distribu-
tion function under external force field will not rigorously follow
the Chapman-Enskog form in Eq. (7). This problem can be qualita-
tively illustrated by the kinetic model. As shown in Fig. 1, a column
of gas is enclosed between two parallel plates. The upper and lower
plates are kept with the constant temperatures Tu and Td. The gas
is static everywhere with no macroscopic flow. With a virtual
interface I inside the domain, the following thought experiment
can be carried out to illustrate the effect of external force on the
gas transport with limited particle mean free path. Let’s consider
the molecules transport across an imaginary interface I in the mid-
dle of the domain. A group of molecules transporting downwards
are denoted as A, which are located within a particle mean free
path ‘A above the interface. Similarly, a group of upward moving
particles are named B with ‘B below the interface, see Fig. 1. The
steady state under the condition Td > Tu without external force
field is a diffusion problem with uniform pressure and without
macroscopic flow velocity. As a result, the density increases and
temperature decreases in the positive x direction. Therefore, across
the interface I there are more molecules with lower mean velocity
coming from the point A, and less molecules with higher speed
from the point B. The requirement of zero net particle flux trans-
port across the interface is satisfied, and the steady state is
remained. For the energy flux at I, the molecules from B carry more
energy than those from A because the energy flux is related to the
higher-order moments of particle velocity, such as to the order c3.
Thus, a steady state in this case is associated with the heat flux in



Fig. 1. Schematic of gas enclosed between two plates.
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the upward direction, which follows the Fourier’s law. Now, let us
suddenly add a constant external force field along the negative x-
direction /x ¼ �Ux ¼ �g into the above heat conduction system.
Under external force field, from the point A=B to the interface I,
the particles from A (B) will get accelerated (decelerated) in a mean
free path length, resulting in c0A > cA and c0B < cB. Therefore, the
original upward heat flux will be suppressed. When the magnitude
of external force is small, the effect of force field performs a small
modification above the previous heat flux. However, if the force is
relative large, it may even play the dominant role over the Fourier-
type thermal conduction in the heat flux. Complicated energy
transport will happen under strong external field with an even
large particle mean free path in the non-equilibrium regime. Anal-
ogously, if the direction of force /x is changed into positive x-
direction, aligned with the original heat flux, the particle velocity
changes c0A < cA and c0B > cB will enhance the heat flux accordingly.

The above analysis on the mechanism of particle and energy
transport under external force field is on the particle free transport
mechanism within a particle mean free path scale. This physical
effect appears in all flow regimes with non-vanishing particle
mean free path and collision time. In the NS regime, the viscosity
and heat conductivity coefficients correspond to non-vanishing
particle mean free path in the relationship l;j / qc‘, where q is
the density, c is the mean particle velocity, and ‘ is the particle
mean free path [27], and the heat transport contribution from
the external force will appear definitely, especially under non-
equilibrium unsteady condition. The above picture can be demon-
strated as well using kinetic differential equation. For brevity, let
us consider one dimensional case first, i.e.,

Df
Dt

¼ @f
@t

þ u
@f
@x

þ /x
@f
@u

¼ fþ � f
s

;

and the corresponding Maxwellian distribution fþ is

fþ ¼ q
k
p

� �Kþ1
2

e�k ðu�UÞ2þn2½ �; ð12Þ

where K is the degree of freedom for the internal motion n. For a
monatomic gas in one dimensional flow, it sets K ¼ 2 to account
for the random motions in y and z directions. Within a small time
interval, it is reasonable to regard the collision time s as a local
constant, then the BGK equation has the following evolving solution
from arbitrary initial state at ðx0; t0;u0Þ, i.e.,

f ðx; t;u; nÞ ¼ 1
s

Z t

t0
fþðx0; t0;u0; nÞe�ðt�t0 Þ=sdt0 þ e�ðt�t0Þ=sf 0ðx0; t0;u0; nÞ;

ð13Þ
where x0 ¼ x� u0ðt � t0Þ � 1

2/xðt � t0Þ2;u0 ¼ u� /xðt � t0Þ are the par-
ticle trajectories in physical and velocity space, and
ðx0;u0Þ ¼ ðx� ðu� /xtÞt � 1

2/xt
2;u� /xtÞ is the initial location for

the particle in phase space which passes through the cell interface
at time x ¼ 0; t. For simplicity, we rewrite the position ðx; t0Þ as
ð0;0Þ, and the corresponding solution becomes

f ð0; t;u; nÞ ¼ 1
s

Z t

0
fþðx0; t0;u0; nÞe�ðt�t0Þ=sdt0 þ e�t=sf 0ð�ðu� /xtÞt

� 1
2
/xt

2;0;u� /xt; nÞ ¼ ~fþ þ ~f 0: ð14Þ

The first term ~f is from the integral of equilibrium distribution along

the characteristic line. In addition, the latter term ~f 0 recovers parti-
cle free transport from the initial distribution function f 0. With the
Taylor expansion, to the first order of evolving time t, we have

~f 0 ¼ e�t=s f 0ð0;0;u; nÞ �
@f 0
@x

ut � @f 0
@u

/xt
� �

þ Oðt2Þ: ð15Þ

In the above solution, the spatial slope related terms describe the
free transport of particles in physical space due to the inhomoge-
neous spatial field. At the same time, the force acceleration distorts
the distribution function in the velocity space with the contribu-
tions of the last term.

As macroscopic variables are related with particle distribution
function through velocity moments,

W ¼
q
qU
qE

0
B@

1
CA ¼

Z
wfdN;

p ¼ 1
3

Z
ðu� UÞ2 þ n2

� �
fdN;

q ¼ 1
2

Z
ðu� UÞ ðu� UÞ2 þ n2

� �
fdN;

where dN ¼ dudn;p is pressure, q is heat flux and

w ¼ 1;u; 12 ðu2 þ n2Þ� 	T
is the vector of moments for collision invari-

ants. They give the contributions from the solution (15) to the

macroscopic flow transport. As shown in the expression of ~f 0 in
Eq. (15), the detailed form of distribution function depends on the
initial flow condition. As a simple homogeneous case, the spatial
derivatives can be assumed to be absent for simplicity. The initial
particle distribution function f 0 is set as the Maxwellian fþ, and thus
its velocity moments

R
uanbfþdN ¼ qhuanbi has the property that

huanbi ¼ huaihnbi;
where the moments of Gaussian distribution can be evaluated
through [29],

hu0i ¼ 1;

hu1i ¼ U;

. . . ;

hunþ2i ¼ Uhunþ1i þ nþ 1
2k

huni;

hn2i ¼ K
2k

;
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where n is an integer. Since there is no contribution from spatial
derivatives here, the net contribution of macroscopic transport from
the external force can be evaluated as

DW ¼
Dq
DqU
DqE

0
B@

1
CA ¼ e�t=s

Z
wð�t/xf

þ
u ÞdN;

Dp ¼ e�t=s

3
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þ
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Dq ¼ e�t=s
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Z
ðu� UÞ ðu� UÞ2 þ n2

� �
ð�t/xf

þ
u ÞdN:

If the forcing term /x and the evolving time t are viewed as local
constants, after integration by parts, we have the following
relations,
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2
s/xq 3hu2i � 6Uhui þ 3U2hu0i

� �
¼ ðK þ 3Þe�t=s

4
t/xq
k

:

ð18Þ
The Eqs. (16)–(18) present qualitative contributions from external
force field on the macroscopic flow evolution. The contribution in
macroscopic equations is exactly due to the external force effect
during the particle free transport between two successive collisions.
The isotropic pressure is not affected by the external field in the
current order of Taylor expansion. However, it is clear that there
exists contribution to the heat flux from the external forcing term
under current order of expansion. The heat flux along the positive
direction of external force acceleration /x has been enhanced. In
other words, the external force will contribute the heat flux trans-
port in the forcing direction.

The above analysis is consistent with the one in [3], where a
first-order modification on the heat flux from gravity is illustrated
using asymptotic perturbation method. A limited particle collision
time s corresponds to a non-vanishing viscosity and heat conduc-
tion coefficients. Therefore, on the Navier-Stokes order the external
forcing term will affect the heat energy transport, especially in
unsteady non-equilibrium regimes. It is noted that the above anal-
ysis is for the case of small time interval and small external force
under a homogeneous initial condition. With the increment of
external force and degree of rarefaction, non-equilibrium transport
phenomena are expected to appear. Fortunately, we have designed
an accurate multiscale method [8], which can be used to study the
non-equilibrium heat transport under external force field in all
flow regimes.

3. Non-equilibrium flow studies

In this section, we are going to present and discuss several
numerical experiments to investigate the non-equilibrium flow
dynamics under external force field. The well-balanced unified
gas-kinetic scheme (UGKS) is employed in all cases [8].

3.1. Poiseuille-type flow

In the first numerical experiment, we investigate the steady
flow of dilute gas between two infinite parallel plates driven by a
unidirectional external force [30–36]. This case serves as a supple-
mentary validation of the current numerical algorithm besides the
cases presented in Ref. [8]. The two plates at rest are located at
y ¼ �L=2 and kept at temperature T0. The gas at rest initially has
a uniform density q0 and temperature T0, and subject to a uniform
external force in the positive x direction, i.e., in the direction paral-
lel to the plates. The initial particle distribution function is set as
the Maxwellian everywhere in the flow domain. There is no pres-
sure gradient in the x direction. If we consider this problem in
the framework of the Navier-Stokes equations, then it is a simple
one-dimensional example. In the framework of kinetic theory,
the steady BGK model equation for Maxwell molecules under
external force field is used to describe the gas evolution in this
system,

v @f
@y

þ /x
@f
@u

¼ Acqðfþ � f Þ; ð19Þ

where Ac is a constant and the collision frequency is 1=s ¼ Acq. The
Maxwellian diffusive reflection boundary is assumed in the
simulation.

With the dimensionless variables defined as

x̂ ¼ x
L0

; ŷ ¼ y
L0

; q̂ ¼ q
q0

; T̂ ¼ T
T0

;

ûi ¼ ui

ð2RT0Þ1=2
; Ûi ¼ Ui

ð2RT0Þ1=2
; f̂ ¼ f

q0ð2RT0Þ3=2
;

P̂ij ¼ Pij

q0ð2RT0Þ ; q̂i ¼ qi

q0ð2RT0Þ3=2
; /̂i ¼ /i

2RT0=L0
;

where ui is the particle velocity, Ui is the macroscopic flow velocity,
Pij is the stress tensor, qi is the heat flux and /i is the external force
acceleration, the dimensionless BGK equation writes

v̂ @ f̂
@ŷ

þ /̂x
@ f̂
@û

¼ 2ffiffiffiffi
p

p 1
Kn

q̂ð ^fþ � f̂ Þ;

where Kn is the Knudsen number in the reference state. The colli-
sion constant is absorbed with unit value Ac ¼ 1. For simplicity,
we will drop the hat notation henceforth to denote dimensionless
variables.

To describe this basic system, Aoki and his co-workers used the
asymptotic analysis [33] for small Knudsen numbers and derived a
system of fluid-dynamic-type equations and their boundary condi-
tions up to the second order. The Hilbert expansion and its Knud-
sen layer correction are carried out with respect to � ¼ ð

ffiffiffi
2

p
=pÞKn,

and the external force acceleration is set as /x ¼ aKn. At large
Knudsen number, the asymptotic theory fails. A number of numer-
ical experiments have been conducted by means of a finite differ-
ence method to solve the BGK equation Eq. (19) at different Kn and
a in [33]. In the following, we use the well-balanced UGKS with
100 uniform physical cells in ½�0:5;0:5� and 41 uniform velocity
points in ½�5;5�, to simulate the cases with Kn ¼ 0:02;0:05;0:1
and a ¼ 1;2;3, and compare the UGKS results with the asymptotic
solutions and the finite difference ones [33].

Figs. 2–4 show the profiles of the density, U-velocity and tem-
perature for a ¼ 1, 2, and 3 in the upper half (0 6 Y � 0:5) of the
flow domain. Figs. 5–7 are the results of the stress tensor compo-
nents Pxx; Pxy and Pyy of the stress tensor and the heat fluxes qx

and qy. The lines (solid, dashed and dash dot) are the results calcu-
lated by the well-balanced UGKS, the circles indicate asymptotic
solutions, and the deltas denote the reference results by Aoki’s
finite difference method. It can be seen that in the cases with
low Knudsen number, the UGKS solutions correspond well with
the asymptotic results. At a ¼ 2 and 3, there is a very small
discrepancy between numerical solutions and asymptotic ones.
The reason for such a deviation is that the asymptotic analysis is
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confined up to the second order in the Knudsen number. When the
Knudsen number and external force become relatively large, the
high-order Hilbert expansion cannot reflect the physical reality.
Therefore, in the cases with Kn ¼ 0:1, the finite difference solutions
(denoted by ”FD result” in the figure) are supplemented as the
benchmark results, which are consistent with the well-balanced
UGKS solutions.

As reported in the previous research, an interesting non-
equilibrium phenomenon in this force driven system is the bimodal
temperature profile, with a hollow near the center between two
Fig. 2. The profiles of density, U-velo

Fig. 3. The profiles of density, U-velo

Fig. 4. The profiles of density, U-velo
plates. This effect was first pointed by Malek et al. [32] using the
DSMC method, and reproduced by the kinetic simulation and the-
ory [33–36]. The localized temperature profiles calculated by the
UGKS and asymptotic solutions are presented in Fig. 8. In general,
the temperatureminimum in this case can be attributed to the con-
tribution of higher order terms, and can be resolved with higher-
order macroscopic equations, such as the super-Burnett one [34].
Although in Fig. 8 the second-order asymptotic analysis overesti-
mates the strength of the temperature hollow, it is obvious that
even for this simple case with rectangular geometry and uniform,
city and temperature with a ¼ 1.

city and temperature with a ¼ 2.

city and temperature with a ¼ 3.



Fig. 5. The profiles of stress and heat flux with a ¼ 1.

Fig. 6. The profiles of stress and heat flux with a ¼ 2.

368 T. Xiao et al. / International Journal of Heat and Mass Transfer 126 (2018) 362–379



Fig. 7. The profiles of stress and heat flux with a ¼ 3.

Fig. 8. The temperature profile in the central part with a ¼ 3.
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weak external force, the Navier-Stokes equations fail to describe the
accurate gas evolution. For non-equilibrium flow study, the use of
kinetic modeling and computation becomes necessary. This case
also validates the capacity of the well-balanced UGKS to simulate
non-equilibrium gas dynamics under external force field.

3.2. Static heat conduction

Consider a column of gas enclosed between two infinite parallel
plates at x ¼ 0 and x ¼ 1, both maintained with different tempera-
ture under a constant external force field perpendicular to the
plates. Instead of studying the Rayleigh-Bénard convection
[37,38], we study the static heat conduction problem and evaluate
the contribution of heat flux due to the external force field. This is
possible before the parameters approach to critical values, such
that the Rayleigh number satisfies Ra < Rac ’ 1700 in the incom-
pressible limit.
Two ways can be used to describe the flow dynamics in this
case. The one-dimensional Navier-Stokes-Fourier equations for this
static system with the x-direction external force reduces to,

@

@y
p ¼ q/x; ð20Þ

@

@x
jðyÞ @

@x
T

� �
¼ 0; ð21Þ

where j is the heat conductivity coefficient. At the same time, the
steady one-dimensional BGK equation becomes

u
@f
@x

þ /x
@f
@u

¼ 2ffiffiffiffi
p

p 1
Kn

qðfþ � f Þ; ð22Þ

where the collision frequency is 1=s ¼ 2q=
ffiffiffiffi
p

p
Kn. Here all the

flow variables are dimensionless unless special statements. As is
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analyzed in Section 2, the external forcing term will influence the
heat evolution process, resulting in a deviation of the profile away
from the above theoretical solution given by Eq. (21).

We use the well-balanced UGKS with 100 uniform physical cells
in ½0;1� and 201 uniform velocity points in ½�5;5� to simulate this
case. The temperature ratio of the cold wall to the hot one is set to
be r ¼ Tc=Th ¼ 0:9. The initial uniform gas is at rest, with the same
hot wall temperature. An external acceleration /x is imposed along
the direction of temperature gradient to the system with different
strengths /x¼�0:001;�0:002;�0:003;�0:005;�0:01;�0:02;�0:05;
�0:1;�0:2;�0:5;�1:0. Here the positive direction of external force
is aligned with the direction of heat flux from wall temperature
difference. Both temperature ratio and external force are set to
be small to have static heat conduction solution.

As the net contribution from external force on heat flux is con-
cerned, the solution at the middle point of the flow domain x ¼ 0:5
is used for the analysis in order to minimize the effect from bound-
aries for the steady case in the absence of macroscopic flow. The
reference Knudsen number is set up with Kn ¼ 0:001;0:01 and
0:1. With the unit Prandtl number associated with the BGK
equation in Eq. (22), the coefficient of heat conductivity can be
calculated via j ¼ lcp=Pr ¼ spcp=Pr, where cp is the specific heat.
The heat fluxes are defined by

q!Kinetic ¼ 1
2

Z
ðu� UÞ ðu� UÞ2 þ n2

� �
fdN; q!Fourier ¼ �jrT;

and the deviation is denoted by Dq ¼ qKinetic � qFourier .
The computational results of convergent states at x ¼ 0:5 are

presented in Tables 1–3, with respect to Kn ¼ 0:001;0:01 and 0:1.
The magnitude of heat flux indeed increases along with Knudsen
number Knref , which is proportional to collision time s / Kn, and
the corresponding heat conductivity coefficient j. The deviation
between qKinetic and qFourier versus external force is presented in
Fig. 9. It is obvious that with the increasing (decreasing) of the
external force, the heat flux is enhanced (inhabited) along the
direction of force. At near-equilibrium regime with relatively weak
external force, the heat flux modification seems to be proportional
to the magnitude of the external force. This simulation result is
consistent with the conclusion in Section 2. Based on the simula-
tion results, even in the Navier-Stokes regime a force-induced heat
flux is proposed,
Table 1
Static heat conduction at x ¼ 0:5 with Knref ¼ 0:001.

/x qx=10
�5(Kinetic) qx=10

�5(Fourier)

�1.0 2.972591 3.897530
�0.5 4.891944 5.360283
�0.2 5.084255 5.272859
�0.1 5.158110 5.252662
�0.05 5.202174 5.249522
�0.02 5.230964 5.250001
�0.01 5.241005 5.250429
�0.005 5.246134 5.250869
�0.003 5.248152 5.251060
�0.002 5.249229 5.251114
�0.001 5.250274 5.251248
0 5.251317 5.251304
0.001 5.252173 5.251324
0.002 5.253001 5.251110
0.003 5.253776 5.250895
0.005 5.255487 5.250781
0.01 5.259658 5.250244
0.02 5.267780 5.248820
0.05 5.291033 5.243666
0.1 5.326649 5.231825
0.2 5.382336 5.192234
0.5 5.565373 5.087006
1.0 7.600921 6.628320
q!force ¼ ðK þ 3Þe�r=s
4

r~/q
k

; ð23Þ

where K ¼ 2 is the internal degree of freedom, and /
!

is the forcing
acceleration. The evolving time r here is defined as a physical
parameter to estimate the capability for the gas particle to transport
heat during its free flight, related with the specific transport phe-
nomenon. This definition is similar to the heat conductivity coeffi-
cient j which measures the heat transport in a macroscopic level.
We can adopt the following way to evaluate the characteristic time
r, i.e.,

r ¼ Cs; ð24Þ
where C is a constant related with specific gas, flow condition and
the truncation error in the expansion given in Eq. (15) in Section 2.
In the current case, we adopt the value C ¼ 6:6, and the theoretical
solution based on the above equation is presented in Fig. 9 as well,
denoted by the solid line. It can be seen that under relatively small
external force, the numerical and theoretical solutions agree with
each other well. Therefore, in the absence of shear stress in one-
dimensional case, the heat flux should have the external force
contribution,

q!Kinetic ¼ q!Fourier þ q!force þ Oðs2Þ; ð25Þ

where the q!Fourier is the conventional heat flux from the tempera-
ture gradient. With the increment of Knudsen number and the mag-
nitude of the external force, the simulation solutions deviate from
the theoretical ones. It is not surprising. As the Knudsen number
and collision time s increase, the modeling in Eq. (25) loses its
validity, see Fig. 9. At the highly non-equilibrium case, the gas dis-
tribution function can be far away from Maxwellian. It is very hard
to identify the source of the discrepancy. For example, in the cavity
case below, even without the external force the heat can transport
from the cold to hot regions.

3.3. Lid-driven cavity flow under external forcing field

The cavity case is more complicated than the previous one with
temperature gradient and external force in Section 3.2, the moving
upper surface of the cavity will induce dissipative shear structure
in the system along with the vertical external force field. In this
Dq=10�5 j=10�4 rT=10�2

�0.924939 5.146952 7.572480
�0.468339 5.282272 10.14770
�0.188604 5.283241 9.980360
�0.094552 5.277817 9.952346
�0.047348 5.273871 9.953838
�0.019037 5.271195 9.959797
�0.009424 5.270205 9.962479
�0.004735 5.269701 9.964267
�0.002908 5.269498 9.965012
�0.001885 5.269395 9.965310
�0.000974 5.269292 9.965757
0.000013 5.269192 9.966055
0.000849 5.269291 9.965906
0.001891 5.269391 9.965310
0.002881 5.269490 9.964714
0.004706 5.269691 9.964118
0.009414 5.270177 9.962181
0.018960 5.271113 9.957711
0.047367 5.273672 9.943108
0.094824 5.276869 9.914646
0.190102 5.282511 9.829114
0.478367 5.283018 9.628990
0.972601 5.145493 12.88177
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case, the square cavity has four walls with length L ¼ 1. The upper
wall moves in tangential direction (positive x�direction) with a
velocity Uw ¼ 0:15. A series of external forcing acceleration /y is
set up in the negative y-direction. The magnitude of force /y is
denoted by g. Non-dimensional Froude number can be defined in
this system to quantify the relative importance of the upper wall’s
driven velocity and the effect of external force,

Fr ¼ Uwffiffiffiffiffi
gL

p : ð26Þ

The initial density and pressure are defined with barometric bal-
ance state,

qðx; y; t ¼ 0Þ ¼ expð2/yyÞ; pðx; y; t ¼ 0Þ ¼ expð/yyÞ;
Uðx; y; t ¼ 0Þ ¼ 0:
Table 2
Static heat conduction at x ¼ 0:5 with Knref ¼ 0:01.

/x qx=10
�4(Kinetic) qx=10

�4(Fourier)

�1.0 4.159400 4.923694
�0.5 4.671721 5.109767
�0.2 4.960925 5.147284
�0.1 5.054733 5.149716
�0.05 5.101326 5.149271
�0.02 5.129215 5.148576
�0.01 5.138495 5.148263
�0.005 5.143113 5.148028
�0.003 5.144938 5.147840
�0.002 5.145862 5.147825
�0.001 5.146787 5.147810
0 5.147720 5.147716
0.001 5.148651 5.147704
0.002 5.149587 5.147692
0.003 5.150518 5.147599
0.005 5.152359 5.147494
0.01 5.156859 5.147195
0.02 5.166055 5.146598
0.05 5.193455 5.144636
0.1 5.238829 5.140213
0.2 5.328186 5.127297
0.5 5.585669 5.053397
1.0 5.975517 4.779735

Table 3
Static heat conduction at x ¼ 0:5 with Knref ¼ 0:1.

/x qx=10
�3(Kinetic) qx=10

�3(Fourier)

�1.0 3.325840 3.675841
�0.5 3.806697 3.959946
�0.2 4.128662 4.317960
�0.1 4.216921 4.346055
�0.05 4.257409 4.343608
�0.02 4.280470 4.336932
�0.01 4.287953 4.333683
�0.005 4.291654 4.331940
�0.003 4.293129 4.331243
�0.002 4.293863 4.330894
�0.001 4.294597 4.330467
0 4.295335 4.330040
0.001 4.296064 4.330467
0.002 4.296792 4.329264
0.003 4.297520 4.328916
0.005 4.298975 4.328062
0.01 4.302596 4.326083
0.02 4.309760 4.321574
0.05 4.330614 4.305378
0.1 4.363158 4.269412
0.2 4.419476 4.162659
0.5 4.504970 3.535368
1.0 4.233966 1.159689
The initial particle distribution function is set as Maxwellian every-
where with respect to stratified density in the cavity. The wall tem-
perature is kept with Tw ¼ 1, and the full Maxwell accommodation
boundary condition is used in the simulation. The Prandtl number
of the gas in this case is Pr ¼ 0:67 with Shakhov model. The refer-
ence Knudsen number is selected as Knref ¼ 0:001;0:075;1:0, which
is defined by reference state at bottom of the cavity qref ¼ 1:0 and
pref ¼ 1:0. The dynamic viscosity in the reference state is calculated
via variable hard sphere (VHS) model,

lref ¼
5ðaþ 1Þðaþ 2Þ ffiffiffiffi

p
p

4að5� 2xÞð7� 2xÞKnref : ð27Þ

Here we choose a ¼ 1:0 andx ¼ 0:5 to recover a hard sphere mona-
tomic gas in the reference state, and its viscosity model is
Dq=10�4 j=10�3 rT=10�2

�0.764294 5.285504 9.315470
�0.438046 5.276438 9.684125
�0.186359 5.271861 9.763697
�0.094983 5.270331 9.771148
�0.047945 5.269553 9.771744
�0.019361 5.269082 9.771297
�0.009768 5.268923 9.771000
�0.004915 5.268844 9.770701
�0.002902 5.268812 9.770403
�0.001963 5.268797 9.770403
�0.001023 5.268781 9.770403
0.000004 5.268766 9.770254
0.000947 5.268753 9.770254
0.001895 5.268740 9.770254
0.002919 5.268727 9.770105
0.004865 5.268699 9.769956
0.009664 5.268633 9.769509
0.019457 5.268504 9.768615
0.048819 5.268104 9.765634
0.098616 5.267432 9.758481
0.200889 5.266018 9.736577
0.532272 5.261136 9.605148
1.195782 5.247476 9.108642

Dq=10�3 j=10�2 rT=10�2

�0.349999 5.364258 6.852468
�0.292500 5.333717 7.424362
�0.189298 5.292371 8.158840
�0.129135 5.278889 8.232900
�0.086200 5.272100 8.238860
�0.056461 5.267998 8.232602
�0.045730 5.266625 8.228578
�0.040286 5.265938 8.226343
�0.038114 5.265663 8.225449
�0.037031 5.265525 8.225002
�0.035870 5.265387 8.224406
�0.034705 5.265249 8.223810
�0.033705 5.265111 8.223512
�0.032472 5.264974 8.222767
�0.031396 5.264836 8.222320
�0.029087 5.264560 8.221128
�0.023487 5.263871 8.218446
�0.011815 5.262488 8.212038
0.025236 5.258318 8.187748
0.093746 5.251281 8.130230
0.256817 5.236785 7.948883
0.969598 5.188042 6.814457
3.074266 5.073368 2.285840



Fig. 9. The variation of Dq ¼ qUGKS � qFourier versus external force /x . The red circle is computational result, the red dashed line is spline fit and the black line is analytical
solution.

Fig. 10. Velocity distribution along the center line with Knref ¼ 0:001.
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l ¼ lref
T
Tref

� �h

; ð28Þ

where Tref is the reference temperature and h is the index related to
HS model. In this case we adopt the value h ¼ 0:72. The local colli-
sion time is evaluated with the relation s ¼ l=p. The computational
domain is covered by 45	 45 uniform cells. The velocity space is
discretized into 28	 28 Gaussian points [39] at Knref ¼ 0:001, while
Fig. 11. Velocity distributi

Fig. 12. Density and local Knudsen number distributio
a 89	 89 non-uniform mesh [40,41] is employed for non-
equilibrium flow simulation at Knref ¼ 0:075 and Knref ¼ 1:0.
3.3.1. Near equilibrium flow
For the cavity case, the movement of upper surface and the

external forcing term are two sources for the fluid motion and
energy transport. At Knref ¼ 0:001, the initial hydrostatic distribu-
tion under external force field is perturbed by the upper wall’s
on with Knref ¼ 0:001.

n along the vertical center line with Knref ¼ 0:001.
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sudden movement. The viscous shear triggers the flow movement
inside the cavity. Due to initial large density variation, the flow
pattern is much more complicated than the cases without external
Fig. 14. Velocity distribution along th

Fig. 13. Temperature contour and
force, especially for the cases with a large variation of local Knud-
sen numbers. In the current study, the external forcing acceleration
takes the values /y ¼ 0:0;�0:1;�0:3;�0:5;�1:0 separately in the
e center line with Knref ¼ 0:075.

heat flux with Knref ¼ 0:001.



Fig. 16. Heat flux distribution along the horizontal center line with Knref ¼ 0:075.

T. Xiao et al. / International Journal of Heat and Mass Transfer 126 (2018) 362–379 375
negative y�direction. Fig. 10 shows the velocity distribution along
the center lines at Knref ¼ 0:001 in the near continuum limit. Fig. 11
presents velocity contours, vector fields, and streamlines at
/y ¼ 0;�0:1;�0:3 inside the cavity. As shown, in the case with a
small magnitude of external force, there exists a large eddy in
the almost whole cavity domain with two small corner vortices,
and the distribution of U-velocity along the vertical center line var-
ies simply. However, with the increment of external force, the flow
pattern changes dramatically. With a strong external force field,
the eddy is confined in the upper half domain of the cavity, and
the high density region in the lower part forms a weak and
reversed running vortex starting from the left corner of the cavity.
An inflexion point appears in the U-velocity curve and the lower
part flow is almost stationary. In fact, as presented in Fig. 12a, with
the relatively large external force, there is an obvious density vari-
ation along the vertical center line. As a result, the flow in the
upper region of the cavity stays in the transition flow regime with
an significant increment of the local Knudsen number, see Fig. 12b
for the Knudsen number distributions along the central vertical
line.

The heat transfer inside the cavity is closely coupled with flow
transport. Fig. 13 presents the temperature contour and the heat
flux under different external forcing at Knref ¼ 0:001. In the
absence of external force case, particle collisions at the top right
corner result in a viscous heating at the macroscopic level, see
Fig. 13a. Due to intensive particle collisions, the expansion cooling
at the top left corner is not obvious in this case, and the tempera-
ture around other three boundaries is almost uniform. This is con-
sistent with the NS solution in the continuum regime [9]. With an
Fig. 15. Temperature contour and
increment of external forcing term, the localized hot and cold spots
no longer stay at the corner regions, and propagate into the cavity.
The penetration of the temperature spots is related to the scale of
the main eddy. From the results in Figs. 13 and 10, the center of the
hot spot is around the location where the negative U-velocity
approaches to its maximum value, and the center of the cold spot
locates a little bit higher than the hot one. At the current
heat flux with Knref ¼ 0:075.
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Knref ¼ 0:001 case, the particle distribution function near the bot-
tom wall will not deviate much from the Maxwellian distribution.
Due to the existence of distinct inhomogeneous temperature dis-
tribution, the heat flux is mainly aligned with the temperature gra-
dient in the upper domain. However, in the lower near-static
region where there is no significant temperature difference, the
heat flux shows the tendency to line up with the direction of the
external force field. The adjustment of particle distribution func-
tion under external forcing provides a rich non-equilibrium heat
transport mechanism besides the heat conduction from the tem-
perature gradient.

3.3.2. Non-equilibrium flow
Now let us turn our attention to the cases in the transition flow

regime at Knref ¼ 0:075 and Knref ¼ 1:0. In these cases, the external
forcing accelerations have the values /y ¼ 0:0;�0:001;�0:002;
�0:003;�0:005;�0:01;�0:02;�0:05;�0:1;�0:2;�0:3;�0:5;�1:0
separately along the negative y�direction. As shown in Figs. 14 and
Fig. 17. Heat flux distribution near the

Fig. 18. Velocity distribution along
18, the particle penetration and efficient mixing in the transition
regime generate one large eddy in all cases. The stabilizing effect
due to external force field is to reduce the rotating speed of the
vortex. With the increment of external force, the velocity profile
is flattened, indicating a weaker vortex motion.

In the non-equilibrium cases the external force field exerts a
great influence on the heat transfer process. As presented in Figs. 15
and 19, in the absence of external force field, both the expansion
cooling and viscous heating have distinguishable contributions to
the heat flux, where the phenomena for the heat flux from cold
to hot regions is observed. This observation is consistent with the
DSMC simulation and unified scheme solution [9,21]. With the
increment of the external force, the heat transfer gradually turns
to the vertical direction along the forcing field. As demonstrated,
even with the viscous heating from the isothermal upper wall,
due to the external force guided energy transport the temperature
decreases there and results the cooling of the upper near wall
region.
cavity center with Knref ¼ 0:075.

the center line with Knref ¼ 1:0.



Fig. 20. Heat flux distribution along the horizontal center line with Knref ¼ 1:0.
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Here in Fig. 16 we first present the distribution of y-direction
heat flux along the horizontal center line at Knref ¼ 0:075. Since
there is almost no temperature variation in the vertical direction
near the center of the cavity, the heat flux there can be attributed
mainly to the external force effect. It can be observed that an incre-
ment of external force enhances the magnitude of heat flux qy in
the same direction. Fig. 17a shows the horizontal distribution of
qy near the cavity center. At weak force fields, all curves are nearly
parallel with each other and the intervals between them are
related to the differences of the force magnitudes. In Fig. 17b, we
plot the heat flux qy � q0 at the cavity center x ¼ y ¼ 0:5, where
q0 is the y-direction heat flux calculated by the Fourier’s law
q0 ¼ �j@T=@y. The numerical results are denoted by red circles,
and the red line is the spline fitting curve of discretized results.
Based on the theoretical analysis in Section 2, we present in the
black line as well, the theoretical force-induced heat flux based
on local collision time, density and temperature, i.e.,

q!force ¼ ðK þ 3Þe�r=sr/
!

yq=4k, where the internal degree of free-
dom K ¼ 1 and the characteristic time r ¼ 3:5s. It can be seen that
in the linear region where the force is relatively small, these two
solutions are consistent with each other. With the increment of
external force, the highly non-equilibrium dynamics deviates the
force-driven heat flux from the theoretical linear relationship.

Figs. 18 and 19 show the flow velocity distributions, tempera-
ture contours, and the heat fluxes for the system under the exter-
nal force field at Knudsen number 1:0. Fig. 20 presents the
distribution of heat flux in y-direction along the horizontal center
line. Here all the profiles of heat flux intersect with each others
under different magnitude of external force acceleration. With
Fig. 19. Temperature contour an
the increment of external force, the qy curve is flattened gradually,
and finally becomes a monotonic decreasing profile along the x-
direction. At Knudsen number Knref ¼ 1:0, the gas dynamics gets
to highly non-equilibrium. For example, in the case with
/y ¼ �0:5, the heat flux is almost parallel to the external force
direction at lower part of the cavity, and the heat transport is in
d heat flux with Knref ¼ 1:0.
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a non-Fourier form from the upper cold region to the bottom hot
region. This phenomenon is consistent with the possible gravity-
thermal instability for the thermal energy concentration to the
central core region for a gravitational system. In the non-
equilibrium regime, the temperature gradient, stress tensor, and
external force contribute to the gas evolution in a highly nonlinear
way which is beyond the linear theory given in Section 2. Fortu-
nately, the UGKS is a reliable experimental tool to capture such a
complicated physical phenomenon.

4. Conclusion

The gas dynamics under external force field is intrinsically a
multiple scale flow problem due to large density variation and
local Knudsen number. In this paper, based on the multiscale UGKS
we investigate the heat transport in non-equilibrium flow under
external force field in different regimes. The UGKS is direct model-
ing method on the mesh size scale. With the variation of the ratio
between the mesh size and local particle mean free path, the
scheme is able to present accurate cross-scale flow simulation
from the Boltzmann to the Navier-Stokes solutions. For the near
equilibrium flow, the additional heat flux along the forcing direc-
tion has been quantitatively evaluated through the analytical
kinetic equation and the numerical simulation. At the same time,
a detailed investigation for lid-driven cavity case has been con-
ducted and the non-equilibrium flow evolution under external
force field has been systematically investigated. The dynamic effect
of the external force on the flow pattern and heat transfer in all
flow regimes is presented. Based on the numerical experiments,
the relationship between force-induced heat flux and the external

force acceleration, i.e., q!force / /
!
, has been quantitatively evalu-

ated in all flow regimes. It can be used as a supplement to con-
struct more complete energy transport in the Navier-Stokes
equations. In the rarefied regime, the enhanced heat transport
from the forcing term may easily overtake the contribution from
the thermal diffusion. This force-driven heat flux can be used to
explain the heat transport from the upper cold high-
gravitational-potential region to the lower hot low-potential
region and the phenomena of gravity-thermal instability. The
study of the multiscale non-equilibrium flow phenomena under
external force field will have great help to the understanding of
large-scale atmosphere environment.
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Appendix A. Unified gas kinetic scheme

Based on the direct modeling on the cell size and time step, the
unified gas kinetic scheme (UGKS) is a combination of modeling
and computation, where the governing equations are constructed
in a discretized space and evolved numerically. With the notation
of cell averaged distribution function in the control volume,

f xi ;yj ;tn ;uk ;v l
¼ f ni;j;k;l ¼

1
Xi;jð x!ÞXk;lð u!Þ

Z
Xi;j

Z
Xk;l

f ðx; y; tn; u;vÞd x!d u!;
where Xi;j ¼ ðxi; yjÞ and Xk;l ¼ ðuk;v lÞ denote the control volume in
physical and velocity space, the update of macroscopic flow vari-
ables and the particle distribution function are coupled in the fol-
lowing way,

Wnþ1
i;j ¼ Wn

i;j þ
1
Xi;j

Z tnþ1

tn

X
r

DLr � Frdt þ 1
Xi;j

Z tnþ1

tn
Gi;jdt; ð29Þ

f nþ1
i;j;k;l ¼ f ni;j;k;l þ

1
Xi;j

Z tnþ1

tn

X
r

ur f̂ rðtÞDLrdt þ 1
Xi;j

Z tnþ1

tn

Z
Xi;j

Qðf Þd x!dt

þ 1
Xi;j

Z tnþ1

tn

Z
Xi;j

Gðf Þd x!dt; ð30Þ

where Fr is the flux for macroscopic flow variables, f r is the
time-dependent gas distribution function at a cell interface for
the microscopic particle flux, and DLr is the cell interface length.
The molecular internal degree of freedom n is omitted here for brev-
ity. The Gi;j and Gðf Þ are the external forcing sources for the updates
of macroscopic flow variables and particle distribution function,
and Qðf Þ is the collision term respectively,

Gi;j ¼
Z
Xk;l

�/x
@

@u
f i;j;k;l � /y

@

@v f i;j;k;l

� �
wdudv ; ð31Þ

Qðf Þ ¼ fþi;j;k;l � f i;j;k;l
s

;

Gðf Þ ¼ �/x
@

@u
f i;j;k;l � /y

@

@v f i;j;k;l:
ð32Þ

Here /
!¼ /x i

!þ /y j
!

is the external force acceleration, fþ is the
equilibrium state, and s ¼ l=p is the particle collision time. Differ-
ent kinetic model can be implemented to evaluate collision term
Qðf Þ, such as the BGK, Shakhov [42], ES-BGK[43] and the full Boltz-
mann collision term [17,44]. In the current work, the Shakhov
model is adopted.

In the numerical algorithm, the conservative flow variables are
updated first in Eq. (29), and the updated macroscopic variables
can be used for the construction of the equilibrium state in Qðf Þ
at tnþ1 time step for an implicit treatment. The derivatives of par-
ticle velocity in Gðf Þ are evaluated via upwind finite difference
method in the discretized velocity space.

For the unified gas kinetic modeling in a control volume frame-
work, the time-dependent flux function is derived from the inter-
face distribution function f, which is evaluated through an
evolving solution of the Shakhov model. The cross-scale time-
dependent integral solution is the key for the multiscale nature
of UGKS. At the center of a cell interface xiþ1=2 ¼ 0; yj ¼ 0 and the
beginning of a time step tn ¼ 0, the solution f ð0;0; t;uk;v lÞ is con-
structed as,

f ð0;0; t;uk;v lÞ ¼ 1
s

Z t

0
fþðx0; y0; t0;u0

k; v 0
lÞe�ðt�t0Þ=sdt0

þ e�t=sf 0ðx0; y0;0;u0
k ;v

0
l Þ; ð33Þ

where x0 ¼ �u0
kðt � t0Þ � 1

2/xðt � t0Þ2; y0 ¼ �v 0
lðt � t0Þ � 1

2/yðt � t0Þ2;
u0
k ¼ uk � /xðt � t0Þ; v 0

l ¼ v l � /yðt � t0Þ are particle trajectories in
physical and velocity space, and ðx0; y0;u0

k ;v0
l Þ ¼ ð�ðuk � /xtÞt�

1
2/xt

2;�ðv l � /ytÞt � 1
2/yt

2;uk � /xt;v l � /ytÞ is the initial location
of the particle which passes through the cell interface at time t.
The time accumulating effect from the external forcing term on
the time evolution of the particle distribution function is explicitly
taken into consideration. The above multiscale solution plays the
dominant role for the construction of the well-balanced UGKS,
where the contributions from both equilibrium hydrodynamic and
non-equilibrium kinetic flow physics are fully combined. With the
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variation of the ratio between evolving time t (i.e., the time step in
the computation) and particle collision time s, the above interface
distribution function covers the kinetic scale particle free transport
to the hydrodynamic scale equilibrium state evolution. After the
interface gas distribution function is determined, the corresponding
flux for the macroscopic flow variables can be constructed as

Fiþ1=2;j ¼
Z
Xk;l

ukf ð0;0; t; uk; v lÞwdudv :

The discretized governing Eqs. (29) and (30) become a closed
system for the time evolution.
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