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Compressible flow has intrinsically multiple scale nature due to the large variations of 
gas density and characteristic scale of flow structure, especially in hypersonic and reentry 
problems. It is challenging to construct an accurate and efficient numerical algorithm to 
capture non-equilibrium flow physics across different regimes. In this paper, a unified gas 
kinetic scheme with adaptive velocity space (AUGKS) for multiscale flow transport will be 
developed. In near-equilibrium flow region, particle distribution function is close to the 
Chapman-Enskog expansion and can be formulated analytically, where only macroscopic 
conservative flow variables are updated. With the emergence of non-equilibrium effect, the 
AUGKS automatically switches to the original unified gas kinetic scheme (UGKS) with a 
discrete velocity space to follow the evolution of particle distribution function. A criterion 
is proposed to quantify the non-equilibrium and is used for the switch between continuous 
and discrete particle velocity space. Following the scale-dependent local evolving solution, 
the AUGKS presents the discretized gas dynamic equations directly on the cell size and 
time step scales, i.e., the so-called direct modeling method. As a result, the scheme is 
able to capture the cross-scale flow physics from particle transport to hydrodynamic wave 
propagation, and provides a continuous variation of solutions from the Boltzmann to 
the Euler equations. Different from conventional DSMC-Fluid hybrid method, the AUGKS 
does not need a buffer zone to match up kinetic and hydrodynamic solutions. Instead, 
continuous and discrete particle velocity spaces are automatically and robustly switched, 
such as translating the continuous Chapman-Enskog distribution function to the discrete 
grid points in the velocity space. Therefore, the AUGKS is feasible for the numerical 
simulations with unsteadiness and complex geometries. Compared with the asymptotic 
preserving (AP) method which solves kinetic equation uniformly over entire computational 
domain with discretized velocity space, the current velocity-space adaptive unified scheme 
speeds up the computation, reduces the memory requirement significantly, and maintains 
the equivalent accuracy for multiscale flow simulations. Many test cases validate the 
current approach. The AUGKS provides an effective tool for non-equilibrium flow studies.
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1. Introduction

The gaseous flow shows a diverse set of behaviors on different characteristic scales. For example, within the mean free 
path and collision time of gas molecules, particles travel freely during most of time with rare intermolecular collisions, 
leading to peculiar non-equilibrium flow dynamics. Meanwhile, with the enlargement of modeling scale to a macroscopic 
hydrodynamic level, the accumulating effect of particle collisions results in an equalization of local temperature and velocity, 
where the moderate non-equilibrium effects can be well described by viscous transport, heat conduction and mass diffusion, 
i.e., the so called transport phenomena [1]. From microscopic particle transport to macroscopic fluid motion, there is a 
continuous variation of flow dynamics. Generally, different flow regimes can be categorized qualitatively according to the 
Knudsen number, which is defined as the ratio of the molecular mean free path to a characteristic physical length scale. 
With the variation of Kn, the whole flow domain can be divided into continuum (Kn < 0.001), slip (0.001 < Kn < 0.1), 
transition (0.1 < Kn < 10), and free molecular regimes (Kn > 10) [2]. When Kn is large, the particle transport and collision 
can be depicted separately in the Boltzmann equation. In another limit with extremely small Kn, the Navier-Stokes equations 
are routinely used to describe macroscopic flow evolution.

The traditional computational fluid dynamics targets to get numerical solutions of the corresponding governing equations. 
For example, the most widely used numerical methods for the Boltzmann equation are the direct Boltzmann solvers [3] and 
the direct simulation Monte Carlo (DSMC) method [4]. In the former methodology, a discretized particle velocity space is 
constructed and the particle distribution function is updated from the transport and collision terms respectively. On the 
other hand, the DSMC method mimics the same physical process while the distribution function is now represented by 
a large amount of test particles and the collision term is calculated statistically. Due to the splitting treatment of particle 
transport and collision, the mesh size and time step should be restricted by the mean free path and collision time, and 
the computational cost is proportional to the amount of discretized velocity points or test particles used in the simulation. 
Meanwhile, the compressible Navier-Stokes solvers are mostly based on the Riemann solvers for inviscid flux and the central 
difference method for viscous terms. The macroscopic flow variables are followed in the simulation. Compared with the 
kinetic methods, the computational cost of continuum flow solvers is much reduced.

The rapid development of aerospace industry faces new challenges for accurate and efficient simulation of complex 
flows. For example, when a shuttle re-enters into the atmosphere, the surrounding gas has a large density variation from 
the rarefied upper atmosphere to lower continuum region, and the flow physics covers all regimes during the landing 
process. Besides, localized non-equilibrium flow structures emerge around the vehicle in hypersonic cruise as a result of 
the geometric effect, such as shock, rarefaction wave, boundary layer, and wake turbulence. The local Knudsen number 
for the flow passing through a hypersonic vehicle in near space flight can cover a wide range of values with five orders 
of magnitude. It is natural to couple different numerical methods in different regions to calculate aerodynamic force and 
heat efficiently. Therefore, hybrid algorithms which combine continuum and kinetic approaches become popular to simulate 
multiple scale flows with the coexistence of continuum and rarefied gas dynamics [5–23]. In these numerical schemes, 
the main flow structure is simulated by the continuum methods efficiently, where the highly dissipative non-equilibrium 
region is resolved by the kinetic methods. Due to the complicated fivefold collision integral in the Boltzmann equation, the 
prevailing kinetic solver used in the hybrid methods is mostly the DSMC method. In the calculation, a dynamic parameter 
is needed to determine the location to separate different flow regimes. The implementation of parallel computing for the 
hybrid method is straightforward since the physical domain has already been divided into blocks on different computational 
nodes.

In kinetic theory, the Chapman-Enskog expansion [24] bridges the Boltzmann and hydrodynamic solutions. Although 
this successive expansion is mathematically attractive, there is little information provided about the intrinsic scale for the 
validation of macroscopic equations, such as the use of non-penetrating fluid element in the Navier-Stokes (NS) modeling. 
The success of the mathematical derivation of high-order equations with inclusion of the so called Burnett or super-Burnett 
terms seems limited due to the lack of specified modeling scales in these extended hydrodynamic equations. Besides, due 
to the uncertainty in choosing the length scale in the definition of Knudsen number, it becomes rather tough to predict a 
universal breakdown criterion for the Chapman-Enskog expansion and the use of the NS solutions, although it is defined 
empirically that the NS equations are valid when Kn ≤ 0.001. In addition, on the particle mean free path and collision time 
scales, the kinetic method has much more degrees of freedom in the description of distribution function, which needs to 
be shrunken to a few macroscopic variables in the buffer zone with a coarse-grained process, such as density, momen-
tum, energy, stress and heat flux. The inherent incompatibility between the particle-based and PDE-based methods also 
leads to a considerable difficulty in the hybridization. Usually a buffer zone is constructed delicately for the information 
exchange between kinetic and continuum solutions, which can hardly be defined accurately in a time-dependent unsteady 
flow problem.

In recent years, the unified gas kinetic scheme (UGKS) has been developed for multiscale flow simulations [25–29]. 
Based on the direct modeling on the mesh size scale, a time-evolving flux function based on the kinetic equation provides 
a smooth transition from particle transport to hydrodynamic wave propagation with the increasing of evolution time. The 
UGKS is an asymptotic preserving (AP) scheme, which preserves the discrete analogy of the Chapman-Enskog expansion 
when the time scale in the simulation is much larger than the particle collision time [30]. More specifically, the UGKS 
has the Euler limit for shock structure computation, with the cell size being much larger than particle mean free path �
(physical shock thickness is O (�)), and it gives the NS limit for boundary layer, where the cell size can be much larger than 
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particle mean free path as well, but less than boundary layer thickness O (
√

�). The success to get the Navier-Stokes limit in 
UGKS is due to the coupling of particle transport and collision in the construction of evolving particle distribution function 
at the cell interface, from which the Chapman-Enskog expansion for the NS solutions can be obtained automatically from 
the integral solution of the kinetic relaxation model in the small Knudsen number limit [27,31]. However, for the UGKS 
the memory requirement and computational cost due to the discretized velocity space limit its efficient applications. In this 
paper, we develop an adaptive unified gas kinetic scheme (AUGKS) with dynamically coupled continuous and discrete par-
ticle velocity space in a unified framework. In the near-equilibrium region, the Chapman-Enskog expansion is used for the 
construction of distribution function with a continuous velocity space, and the corresponding discrete distribution function 
can be easily constructed from the Chapman-Enskog expansion if needed. Thus, in these regions only macroscopic conser-
vative flow variables are stored and updated in the simulation. With the increase of non-equilibrium effects, the AUGKS 
tracks the evolution of distribution function directly with a discrete velocity space. Based on the Chapman-Enskog expan-
sion, a criterion to switch continuous-discrete velocity space in the simulation is proposed and validated through numerical 
experiments. Compared with the original UGKS method, the current adaptive scheme frees the memory requirement in the 
near-equilibrium flow regime and speeds up the computation, but provides the same physical solution. Due to the use of 
particle distribution function in the whole computational domain, i.e., updated or reconstructed ones in different regions, 
the AUGKS avoids domain decomposition in the physical space to distinguish and connect fluid and kinetic solvers. In other 
words, no buffer zone is needed in AUGKS.

This paper is organized as follows. Section 2 is a brief introduction of kinetic theory. Section 3 presents the numerical 
implementation of the adaptive unified gas kinetic scheme and proposes a switching criterion of the velocity space adapta-
tion. Section 4 includes numerical examples to demonstrate the performance of the current scheme. The last section is the 
conclusion.

2. Gas kinetic modeling

The gas kinetic theory describes the time-space evolution of particle distribution function f (x, u, t), where x ∈ R3 is 
space variable and u ∈R3 is particle velocity. In the absence of external force field, the Boltzmann equation of a monatomic 
dilute gas becomes,

ft + u · ∇x f = Q ( f , f ) =
∫
R3

∫
S2

[
f (u′) f (u′

1) − f (u) f (u1)
]
B(cos θ, g)d�du1, (1)

where u, u1 are the pre-collision velocities of two classes of molecules, and u′, u1
′ are the corresponding post-collision ve-

locities. The collision kernel B(cos θ, g) measures the strength of collisions in different directions, where θ is the deflection 
angle and g = |g| = |u − u1| is the magnitude of relative pre-collision velocity. The � is the unit vector along the relative 
post-collision velocity u′ − u1

′ , and the deflection angle θ satisfies cos θ = � · g/g . The conservation of momentum and 
energy leads to the following relations,

u′ = u + u1

2
+ |u − u1|

2
� = u + g� − g

2
,

u1
′ = u + u1

2
− |u − u1|

2
� = u1 − g� − g

2
.

(2)

Due to the complicated fivefold integration in the Boltzmann collision operator, some simplified kinetic models have 
been constructed, such as the Shakhov [32]. In this model, the Boltzmann collision operator Q ( f , f ) is replaced with a 
relaxation operator S( f ), which writes,

ft + u · ∇x f = S( f ) = f + − f

τ
,

f + = ρ

(
λ

π

) 3
2

e−λ(u−U)2
[

1 + (1 − Pr)c · q
(

c2

RT
− 5

)
/(5pRT )

]
,

(3)

where τ = μ/p is the collision time. The macroscopic density, velocity, temperature, and heat flux are marked with 
ρ, U, T , q. The c = u − U is particle peculiar velocity, Pr is the Prandtl number, R is the gas constant, and λ = ρ/(2p). 
In this paper, the numerical simulations will be conducted by either the full Boltzmann or the Shakhov collision terms.

The macroscopic conservative flow variables are related to the moments of particle distribution function via

W =
⎛⎝ ρ

ρU
ρE

⎞⎠=
∫

f ψdu,

and the collision terms satisfy the compatibility condition,
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∫
Q ( f , f )ψdu =

∫
S( f )ψdu = 0,

where ψ = (
1,u, 1

2 u2
)T

is a vector of collision invariants. Here we rewrite the collision terms Q ( f , f ) and S( f ) into a 
general form Q ( f ).

With a local constant collision time τ , the integral solution of Eq. (3) can be constructed along the characteristic line,

f (x, t,u) = 1

τ

t∫
t0

f +(x′, t′,u)e−(t−t′)/τ dt′ + e−(t−t0)/τ f0(x0,u), (4)

where x′ = x − u(t − t′) is the particle trajectory, and f0 is the distribution function at the initial time t = t0 with x0 =
x − u(t − t0). Based on the above evolving solution, the corresponding discretized gas dynamic equations on the cell size 
and time step scales are constructed in the gas kinetic scheme.

3. Adaptive unified gas kinetic scheme

In this section, we will present the principle and numerical implementation of the velocity-space adaptive unified gas 
kinetic scheme (AUGKS). The original gas kinetic scheme with continuous and discrete particle velocity space will be in-
troduced first. The detailed coupling of continuum and kinetic treatments and the switching criterion for velocity space 
transformation will be discussed. For simplicity, the following introduction is based on two-dimensional case, while the 
extension to three dimension is straightforward.

3.1. Unified gas kinetic scheme with discrete velocity space

With the notation of cell averaged quantities in a control volume,

Wn
i, j = 1

	xi	y j

xi+1/2∫
xi−1/2

y j+1/2∫
y j−1/2

W(x, y, tn)dxdy,

f n
i, j,l,m = 1

	xi	y j	ul	vm

xi+1/2∫
xi−1/2

y j+1/2∫
y j−1/2

ul+1/2∫
ul−1/2

vm+1/2∫
vm−1/2

f (x, y, tn, u, v)dxdydudv,

the updates of macroscopic conservative variables and particle distribution function are coupled in the UGKS,

Wn+1
i, j = Wn

i, j + 1

	xi	y j

tn+1∫
tn

y j+1/2∫
y j−1/2

(Fi−1/2 − Fi+1/2)dydt

+ 1

	xi	y j

tn+1∫
tn

xi+1/2∫
xi−1/2

(F j−1/2 − F j+1/2)dxdt,

(5)

f n+1
i, j,l,m = f n

i, j,l,m + 1

	xi	y j

tn+1∫
tn

y j+1/2∫
y j−1/2

ul( f i−1/2, j,l,m − f i+1/2, j,l,m)dydt

+ 1

	xi	y j

tn+1∫
tn

xi+1/2∫
xi−1/2

vm( f i, j−1/2,l,m − f i, j+1/2,l,m)dxdt

+
tn+1∫
tn

Q ( f i, j,l,m)dt,

(6)

where Fi±1/2 are the fluxes of conservative variables.
In UGKS, the flux function is evaluated through the time-dependent particle distribution at the cell interface, which is 

constructed from the evolving solution of the Shakhov equation. With the defined cell interface xi+1/2 = 0, y j = 0 and initial 
time tn = 0, at a local constant collision time τ , the integral solution in Eq. (4) can be written as,
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f (0,0, t, ul, vm, ξ) = 1

τ

t∫
0

f +(x′, y′, t′, ul, vm, ξ)e−(t−t′)/τ dt′

+ e−t/τ f0(x0, y0, ul, vm, ξ),

(7)

where x′ = −ul(t − t′) and y′ = −vm(t − t′) are the particle trajectories, and x0, y0 are the initial locations for the particle 
which passes through the cell interface at time t . Here f0 is the particle distribution function at the beginning of n-th 
time step. The internal degree of freedom ξ describes the random motion in z direction. This scale-dependent evolution 
solution is used to define the interface distribution function in Eq. (6), which provides the continuous spectrum of flow 
dynamics from the kinetic non-equilibrium particle transport in the initial distribution function f0 to the hydrodynamic 
wave propagation in the integration of equilibrium state f + . The real flow physics simulated in the scheme depends on the 
ratio of evolving time t (i.e., the time step in the computation) to the particle collision time τ .

To the second order accuracy, the initial particle distribution function f0 is reconstructed as

f0(x, y, ul, vm, ξ) =
{

f L
i+1/2, j,l,m + σi, j,l,mx + θi, j,l,m y, x ≤ 0,

f R
i+1/2, j,l,m + σi+1, j,l,mx + θi+1, j,l,m y, x > 0,

(8)

where ( f L
i+1/2, j,l,m , f R

i+1/2, j,l,m) are the reconstructed initial distribution functions at the left and right hand sides of a cell 
interface, and (σ , θ ) are the corresponding slopes along x and y directions. In addition, the equilibrium distribution function 
around a cell interface is constructed as

f + = f +
0

[
1 + (1 − H[x])āL x + H[x]āR x + b̄ y + Āt

]
= f +

0

(
1 + āL,R x + b̄ y + Āt

)
, (9)

where f +
0 is the equilibrium distribution at (x = 0, y = 0, t = 0), and H[x] is the Heaviside step function. The coefficients 

(āL,R , ̄b, Ā) are the spatial and temporal derivatives of the equilibrium distribution function, which can be expanded as,

āL,R = āL,R
1 + āL,R

2 u + āL,R
3 v + āL,R

4
1

2
(u2 + v2 + ξ2) = āL,R

α ψα,

b̄ = b̄1 + b̄2u + b̄3 v + b̄4
1

2
(u2 + v2 + ξ2) = b̄αψα,

Ā = Ā1 + Ā2u + Ā3 v + Ā4
1

2
(u2 + v2 + ξ2) = Āαψα.

The equilibrium distribution function f +
0 at the cell interface depends on the local macroscopic flow variables W0. Based 

on the compatibility condition,∫
( f + − f )|x=0,t=0ψdudvdξ = 0,

we get∫
f +
0 ψαdudvdξ = W0 =

∑
ul>0

f L
i+1/2, j,l,mψdudvdξ +

∑
ul<0

f R
i+1/2, j,l,mψdudvdξ.

After the determination of the equilibrium state at the cell interface, its spatial derivatives āL , ̄aR can be obtained from 
the slopes of conservative flow variables on both sides of a cell interface,(

∂W

∂x

)L

� W0 − Wi

	x− =
∫

āL f +
0 ψdudvdξ = M̄0

αβ āL
β,(

∂W

∂x

)R

� Wi+1 − W0

	x+ =
∫

āR f +
0 ψdudvdξ = M̄0

αβ āR
β ,

where M̄0
αβ = ∫

f +
0 ψαψβdudvdξ is a known matrix, āL,R = (āL,R

1 , ̄aL,R
2 , ̄aL,R

3 , ̄aL,R
4 )T . Here 	x+ = xi+1 − xi+1/2 and 	x− =

xi+1/2 − xi are the distances from the cell interface to cell centers. The tangential derivative b̄ is obtained from∫
b̄ψ f +

0 dudvdξ =
∑
l,m

(θi, j,l,m H[ul] + θi+1, j,l,m(1 − H[ul]))ψ.

The time derivative Ā is related to the temporal variation of conservative flow variables,

∂W =
∫

Ā f +
0 ψdudvdξ,
∂t
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and it can be calculated via the time derivative of the compatibility condition

d

dt

∫
( f + − f )ψdudvdξ |x=0,t=0= 0.

With the help of the Euler equations, it gives

−
∫

u
∂ f +

∂x
ψdudvdξ −

∫
v
∂ f +

∂ y
ψdudvdξ = ∂W

∂t
=
∫

Ā f +
0 ψdudvdξ,

and the spatial derivatives in the above equation have been obtained from the initial equilibrium reconstruction in Eq. (9). 
Therefore, we have∫

Ā f +
0 ψdudvdξ = −

∫
(āL,R u + b̄v) f +

0 ψdudvdξ,

from which Ā = ( Ā1, Ā2, Ā3, Ā4)
T are fully determined.

After all coefficients are obtained, the time dependent interface distribution function becomes

f (0,0, t, ul, vm, ξ) = (
1 − e−t/τ ) f +

0

+ (
τ (−1 + e−t/τ ) + te−t/τ ) āL,R ul f +

0

+ (
τ (−1 + e−t/τ ) + te−t/τ ) b̄vm f +

0

+ τ
(
t/τ − 1 + e−t/τ ) Ā f +

0

+ e−t/τ
[(

f L
i+1/2, j,l,m − ultσi, j,l,m − vmtθi, j,l,m

)
H [ul]

+
(

f R
i+1/2, j,l,m − ultσi+1, j,l,m − vmtθi+1, j,l,m

)
(1 − H [ul])

]
= f̃ +

i+1/2, j,l,m + f̃ i+1/2, j,l,m,

(10)

where f̃ +
i+1/2, j,l,m is related to equilibrium state integration and f̃ i+1/2, j,l,m is related to the initial distribution. With the 

variation of the ratio between evolving time t (i.e., the time step in the computation) and collision time τ , the above 
interface distribution function provides a self-conditioned multiple scale solution across different flow regimes. After the 
interface distribution function is determined, the corresponding fluxes of conservative flow variables are evaluated through

Fi+1/2 =
∫

ul f (0,0, t, ul, vm, ξ)ψdudvdξ.

Inside each control volume, the collision term Q ( f ) is to be determined for the update of particle distribution function 
in Eq. (6). In the unified scheme, the numerical treatment of Q ( f ) is based on the full Boltzmann collision term and the 
Shakhov model. For the full Boltzmann collision term, the fast spectral method is employed [33–35], which is an explicit 
technique. To overcome the stiffness of the Boltzmann collision term, especially in the continuum limit, an explicit-implicit 
collision operator with the inclusion of the Shakhov relaxation term is introduced as

tn+1∫
tn

Q ( f i, j,l,m)dt = βn	t Q ( f n
i, j, f n

i, j)l,m + (1 − βn)	t
f (n+1)+

i, j,l,m − f n+1
i, j,l,m

τn+1
i, j

. (11)

In the computation, Eq. (5) can be solved first, and its solution can be used for the construction of the Shakhov equilibrium 
state in Eq. (11) at tn+1. As analyzed qualitatively in Eq. (10), the contributions from the initial distribution and equilibrium 
state are proportional to the factors e−t/τ and 1 − e−t/τ respectively within an evolving process. Thus, the adjustment 
coefficient here can be defined as

β = exp(−	t/τi, j),

where 	t is the time step and τi, j is the local collision time. This procedure plays an equivalent role as the penalty method 
proposed in [36].

3.2. Numerical analysis of unified gas kinetic scheme

In this part, a brief numerical analysis of UGKS will be presented. We start from homogeneous problem first. In this case, 
the solution algorithm of UGKS in Eq. (6) becomes,
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f n+1 = f n + βn	t Q ( f n, f n) + (1 − βn)	t
f (n+1)+ − f n+1

τn+1 . (12)

Here we omit subscripts referring to grid index for simplicity. As is known, the Boltzmann collision integration can be 
divided into gain Q +( f , f ) and loss term Q −( f , f ), which writes,

Q +( f , f ) =
∫
R3

∫
S2

[
f (u′) f (u′

1)
]
B(cos θ, |u − u1|)d�du1, Q −( f , f ) = ν f ,

where ν = ∫
R3

∫
S2 f (u1)B(cos θ, |u − u1|)d�du1 is collision frequency. Thus, Eq. (12) can be rewritten as

f n = 1 − 	tνn−1βn−1

1 + 	t
(
1 − βn−1

)
/τn

f n−1 + 	tβn−1

1 + 	t
(
1 − βn−1

)
/τn

Q n−1+

+ 	t
(
1 − βn−1

)
/τn

1 + 	t
(
1 − βn−1

)
/τn

f (n)+.

(13)

Starting from initial distribution f 0, the numerical solution of UGKS gives

f n =
n−1∏
i=0

(
1 −

(
1 − β i

)
/τ i+1 + ν iβ i

1 + 	t
(
1 − β i

)
/τ i+1

	t

)
f 0

+
n−1∑
j=0

	tβ j Q j
+

1 − 	tv jβ j

n−1∏
i= j

1 − 	tν iβ i

1 + 	t
(
1 − β i

)
/τ i+1

+
n−1∑
j=0

	t
(
1 − β j

)
/τ j+1

1 − 	t
(
1 − β j

)
/τ j+1

f +
n−1∏
i= j

1 − 	tviβ i

1 + 	t
(
1 − β i

)
/τ i+1

.

(14)

When 	t approaches to zero, and assuming a local constant relaxation time τ , the coefficient series converge to

n−1∏
i=0

(
1 −

(
1 − β i

)
/τ + ν iβ i

1 + 	t
(
1 − β i

)
/τ

	t

)

=exp

[
−

n−1∑
i=0

	t

(
1 − β i

)
/τ + ν iβ i

1 + 	t
(
1 − β i

)
/τ

+
n−1∑
i=0

ln

(
1 −

(
1 − β i

)
/τ + ν iβ i

1 + 	t
(
1 − β i

)
/τ

	t

)

+
n−1∑
i=0

(
1 − β i

)
/τ + ν iβ i

1 + 	t
(
1 − β i

)
/τ

	t

]

→exp

⎛⎝−
t∫

0

(
v( f )β + 1 − β

τ

)
dt′

⎞⎠ .

(15)

With the regularity of gain term Q + in the Boltzmann collision integration [37], the solution provided by UGKS in Eq. (14)
becomes

f (t) = f0e
− ∫ t

0

(
νβ+ 1−β

τ

)
dt′ +

t∫
0

(
β Q +( f , f ) + 1 − β

τ
f +

)
e
− ∫ t

t′
(
νβ+ 1−β

τ

)
dt′′

dt′

= f0e− ∫ t
0 vdt′ +

t∫
0

Q +( f , f )e− ∫ t
t′ νdt′′dt′,

(16)

which is the exact solution of Boltzmann equation.
For inhomogeneous case, the flux function will contribute to the flow evolution. For brevity, one-dimensional case is 

considered, and the solution algorithm of UGKS in Eq. (6) becomes
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f n+1
i,l = f n

i,l +
1

	x

tn+1∫
tn

ul( f i−1/2,l − f i+1/2,l)dt

+ βn	t Q ( f n
i , f n

i )l + (1 − βn)	t
f (n+1)+

i,l − f n+1
i,l

τn+1
i

,

(17)

where the time-dependent solution of distribution function at cell interface in Eq. (10) writes,

f (0, t, ul, ξ) = (
1 − e−t/τ ) f +

0

+ (
τ (−1 + e−t/τ ) + te−t/τ ) āL,R ul f +

0

+ τ
(
t/τ − 1 + e−t/τ ) Ā f +

0

+ e−t/τ
[(

f L
i+1/2,l − ultσi,l

)
H [ul]

+
(

f R
i+1/2,l − ultσi+1,l

)
(1 − H [ul])

]
.

(18)

Let us consider two limiting flow regimes first. In the collisionless limit where τ → ∞, the relation 	t � τ is satisfied, 
and the interface distribution in Eq. (18) becomes

f (0, t, ul, ξ) =
(

f L
i+1/2,l − ultσi,l

)
H [ul] +

(
f R

i+1/2,l − ultσi+1,l

)
(1 − H [ul]), (19)

and Eq. (17) reduces to

f n+1
i,l = f n

i,l +
1

	x

[(
	t f L

i−1/2,l −
1

2
	t2ulσi−1,l

)
H [ul]

+
(

	t f R
i−1/2,l −

1

2
	t2ulσi,l

)
(1 − H [ul])

−
(

	t f L
i+1/2,l −

1

2
	t2ulσi,l

)
H [ul]

−
(

	t f R
i+1/2,l −

1

2
	t2ulσi+1,l

)
(1 − H [ul])

]
,

(20)

which is a second-order upwind scheme for free molecular flow.
For the continuum flow, we consider a resolved case where there exist continuous distributions of flow variables and 

their derivatives inside the domain. Therefore, reconstruction technique used in Eq. (18) is equivalent with central interpo-
lation, and the interface solution becomes

f (0, t, ul, ξ) = (
1 − e−t/τ ) f +

0

+ (
τ (−1 + e−t/τ ) + te−t/τ ) āul f +

0

+ τ
(
t/τ − 1 + e−t/τ ) Ā f +

0

+ e−t/τ ( f i+1/2,l − ultσi+1/2,l
)
.

(21)

In the Navier-Stokes regime, the particle distribution follows the first order Chapman-Enskog expansion with respect to a 
small factor ε ,

f = f (0) + f (1)ε + O (ε2),

which is equivalent with the successive form of the Shakhov equation [38],

f = f + − τ ( f +
t + u f +

x ) + O (τ 2). (22)

To pursue a Navier-Stokes flow, the interface distribution in Eq. (21) should follow

f (0, t, ul, ξ) = f +
0 − (τ (āu + Ā) + t Ā) f +

0 , (23)

where the factor e−t/τ approaches to zero. The solution algorithm in Eq. (17) goes to

f n+1
i,l = f n

i,l +
1

	x

tn+1∫
n

ul( f i−1/2,l − f i+1/2,l)dt + 	t
f (n+1)+

i,l − f n+1
i,l

τn+1
i

, (24)
t
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which can be rewritten as

f n+1
i,l = f (n+1)+

i,l − τn+1
i

f n+1
i,l − f n

i,l

	t
− τn+1

i

∫ tn+1

tn ul( f i−1/2,l − f i+1/2,l)dt

	t	x
. (25)

Following the strategy given in Eq. (25), the Navier-Stokes distribution in the UGKS is recovered,

f n
i,l = f (n)+

i,l + O (	x2) − τ

(
∂

∂t
f (n)+

i,l + ul
∂

∂x
f (n)+

i,l + O (	t,	x2)

)
, (26)

and the initial distribution function interpolated to cell interface in Eq. (21) is

f (0,0, ul, ξ) = f n
i,l +

1

2
	x

∂

∂x
f n

i,l

= f (n)+
i,l − τ

(
∂

∂t
f (n)+

i,l + ul
∂

∂x
f (n)+

i,l

)
+ ∂

∂x

(
f (n)+

i,l − τ

(
∂

∂t
f (n)+

i,l + ul
∂

∂x
f (n)+

i,l

))
1

2
	x

+ O (	x2, τ	t, τ	x2)

= f (n)+
i+1/2,l − τ

(
∂

∂t
f (n)+

i+1/2,l + ul
∂

∂x
f (n)+

i+1/2,l

)
+ O (τ	t,	x2).

(27)

By using the above solution as initial state f i+1/2,l in the integral solution in Eq. (21), it turns,

f (0, t, ul, ξ) = f +(0,0, ul, ξ) − (τ (āul + Ā) + t Ā) f +(0,0, ul, ξ)

− τ te−t/τ ul
∂

∂x

(
(āul + Ā) f +(0,0, ul, ξ)

)+ O (τ	t,	t2,	x2)

= f +(0, t, ul, ξ) − τ

(
∂

∂t
f +(0, t, ul, ξ) + ul

∂

∂x
f +(0, t, ul, ξ)

)
+ O (τ	t,	t2,	x2).

(28)

The Navier-Stokes equations can be fully obtained by taking conservative moments of Eq. (24),

∂ρ

∂t
+ ∂(ρU )

∂x
= O

(
τ	t,	t2,	x2

)
,

∂(ρU )

∂t
+ ∂

∂x

(
ρU 2 + P − 4

3
μ

∂

∂x
U

)
= O

(
τ	t,	t2,	x2

)
,

∂(ρE)

∂t
+ ∂

∂x

(
(ρE + P )U − 4

3
μU

∂

∂x
U − κ

∂

∂x
T

)
= O

(
τ	t,	t2,	x2

)
,

(29)

with the coefficients of viscosity μ = τ p and heat conduction κ = cpτ p/Pr.
As demonstrated, the UGKS is an efficient method to describe Navier-Stokes dynamics. Moreover, as τ → 0, the dissi-

pative structure narrows down to discontinuity in the flow field due to intensive intermolecular collisions. With limited 
numerical spatial and temporal resolution, the effects of physical viscosity and conductivity are replaced by numerical dis-
sipation. In this way, the UGKS becomes a second order shock capturing scheme for the Euler equations with O (	t2, 	x2).

The above analysis illustrates two limiting cases of UGKS. However, it is challenging to analyze the validity and accuracy 
of UGKS in theory between these two ends, mainly due to the lack of knowledge in the transition regime. From individual 
particle transport to collective fluid behavior, how many degrees of freedom and which variables should be used to model 
the flow dynamics within the coarse-graining process still remain as open problems. In spite of progresses of asymptotic 
techniques starting from Boltzmann and its model equation, there is no clearly defined modeling scale for extended hy-
drodynamic equations, and the convergence of higher order expansion is questionable in itself. Therefore, the validation 
of UGKS in the transition regime at a relative large modeling scale has to rely partly on the numerical solutions with re-
spect to the results from Boltzmann or DSMC methods with the finest kinetic scale resolution. As presented in [27], the 
homogeneous relaxation problem is tested for different kinds of particle distribution function, i.e., anisotropic Maxwellian, 
double half-normal distribution with discontinuity, and tailored asymmetric ones. The results indicate that after tc = 0.2τ

for moderate initial non-equilibrium distribution, and tc = 2τ for extremely one, the deviations between full Boltzmann and 
Shakhov solutions become marginal, and the solution algorithm in Eq. (12) quickly becomes equivalent with

f n+1 = f n + βn	t
f (n)+ − f n

n
+ (1 − βn)	t

f (n+1)+ − f n+1

n+1 . (30)

τ τ
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In other words, the Boltzmann collision operator only plays a significant role at the very early stage of evolving process 
in highly rarefied region. Generally, for inhomogeneous problem during this interval with t < tc , the interface distribution 
approaches to particle free transport formula in Eq. (19), and the UGKS becomes an upwind scheme for Boltzmann equation,

f n+1
i,l = f n

i,l +
1

	x

[(
	t f L

i−1/2,l −
1

2
	t2ulσi−1,l

)
H [ul]

+
(

	t f R
i−1/2,l −

1

2
	t2ulσi,l

)
(1 − H [ul])

−
(

	t f L
i+1/2,l −

1

2
	t2ulσi,l

)
H [ul]

−
(

	t f R
i+1/2,l −

1

2
	t2ulσi+1,l

)
(1 − H [ul])

]
+ 	t Q ( f n

i , f n
i )l.

(31)

And after several relaxation times, the UGKS provide following numerical algorithm in the transition regime,

f n+1
i,l = f n

i,l +
1

	x

tn+1∫
tn

ul( f i−1/2,l − f i+1/2,l)dt + βn	t
f (n)+

i,l − f n+1
i,l

τn
i

+ (1 − βn)	t
f (n+1)+

i,l − f n+1
i,l

τn+1
i

, (32)

which is a consistent full Shakhov solution.
Since the numerical experiments in [27] mainly target homogeneous cases, here we will provide a numerical experiment 

of shear layer [39] to demonstrate the performance of UGKS in inhomogeneous cases over the whole Knudsen regimes. The 
initial condition of argon gas is set as

(n, U , V , T ) =
{ (

1.33291 × 1025/m3,0, 408.05 m/s,400 K), x ≤ 0,(
1.33291 × 1025/m3,0,−408.05 m/s,200 K

)
, x > 0.

(33)

The Knudsen number Kn = �/L∞ is fixed as 5.0 × 10−3 regarding to the reference temperature of 300 K, with mean free 
path � = 1.0 × 10−7 m, mean collision time τph = 2.5 × 10−10 s and L∞ = 2.0 × 10−5 m. The reference viscosity of argon 
is μ = 2.117 × 10−5 Pa·s at T = 273 K, and the viscosity coefficient depends on the temperature with a power ω = 0.81. 
The density, velocity, temperature, heat flux, as well as velocity distribution functions at different times t1 = τph , t2 = 10τph , 
t3 = 100τph , t4 = 781.76τph have been obtained, with a changeable cell size in order to identify the shear solution on 
different scales. The UGKS with Boltzmann-Shakhov explicit-implicit collision operator in Eq. (17) (denoted with B+S) and 
complete Shakhov term in Eq. (32) (denoted with Full S) are used simultaneously for comparison. The numerical results 
are presented in Fig. 1, 2, 3, and 4 respectively, with the reference solutions of DSMC and Navier-Stokes solver [31] for 
evaluating the performance of UGKS over the whole Knudsen regime. With the incorporation of full Boltzmann collision 
term, the UGKS provides more reliable solutions compared to complete Shakhov ones in the free molecular and early 
transition regimes, which is clearly demonstrated in Fig. 1 and 2, especially in Fig. 1d and 2d for the particle distribution 
function along V −velocity at the center of flow domain. Besides, with the explicit-implicit strategy, it does not lose the 
validity to capture the asymptotic-preserving Navier-Stokes solutions, as presented in Fig. 4. By comparing UGKS solution 
with the DSMC and Navier-Stokes solutions, it is clear that UGKS is a multiscale solver from the kinetic to hydrodynamic 
regimes, and works effectively in the transition regime. In general, the direct modeling on the mesh size and time step scales 
ensures the capturing of scale variation dynamics from non-equilibrium to equilibrium flow physics. The UGKS algorithm 
can be regarded as a kind of discretized governing equations based on the representation of physical laws in a discretized 
space.

3.3. Gas kinetic scheme with continuous velocity space for near-continuum flow

In continuum flow with intensive intermolecular collisions, the particle distribution function is close to a local ther-
modynamic equilibrium, and the Navier-Stokes equations are valid to describe macroscopic fluid motion. In this case, it is 
straightforward to apply the first-order Chapman-Enskog expansion to construct the corresponding distribution function, 
and thus only macroscopic conservative variables need to be stored and updated. In the Chapman-Enskog expansion, the 
particle distribution function is expanded around the equilibrium state with respect to a small factor ε ,

f = f (0) + f (1)ε + f (2)ε2 + · · · ,

which is equivalent to the successive expansion of the Shakhov model [38],

f = f + − τ
D

f + + τ
D

(
τ

D
f +

)
+ · · · , (34)
Dt Dt Dt
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Fig. 1. Numerical results of UGKS with Boltzmann-Shakhov explicit-implicit operator, UGKS with Shakhov term only, as well as DSMC for the shear layer 
problem at t = τph . For UGKS, dx/� = 0.1, dt = 1.96 × 10−3τph . (For interpretation of the colors in the figures, the reader is referred to the web version of 
this article.)

where D/Dt = ∂/∂t + u∂/∂x + v∂/∂ y is the total derivative. For the first order truncation with respect to the collision time 
τ , the distribution function f becomes,

f = f + − τ ( f +
t + u f +

x + v f +
y ) + O (τ 2).

Following this procedure, in the gas kinetic scheme with continuous particle velocity space, we can expand the equilibrium 
distribution function around the interface,

f +(x, t) = f +(x = 0, t = 0)
(

1 + al,r x + bl,r y + At
)

,

where f +
0 is the equilibrium distribution at (x = 0, y = 0, t = 0). The particle distribution function f0 in Eq. (7) at the 

beginning of each time step can be constructed as [31],

f0 =
⎧⎨⎩ f +(l)

0

(
1 + alx + bl y − τ

(
alu + bl v + Al

))
, x ≤ 0

f +(r)
0

(
1 + ar x + br y − τ

(
aru + br v + Ar)) , x > 0

(35)

where f +(l)
0 and f +(r)

0 are the equilibrium distribution functions which have one to one correspondence with the macro-

scopic flow variables Wl,r
i+1/2 at left and right sides of the interface. The space-time derivatives (al,r, bl,r, Al,r) depend on 

the reconstructed spatial slopes ∇Wl,r of macroscopic flow variables at the left and right sides of a cell interface, which 
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Fig. 2. Numerical results of UGKS with Boltzmann-Shakhov explicit-implicit operator, UGKS with Shakhov term only, as well as DSMC for the shear layer 
problem at t = 10τph . For UGKS, dx/� = 0.4, dt = 6.61 × 10−2τph .

are determined in the similar way given in Sec. 3.1. After the determination of the equilibrium distribution function, its 
spatial derivatives al,r can be evaluated via,∫

al f +(l)
0 ψdudvdξ = ∇xWl,∫

ar f +(r)
0 ψdudvdξ = ∇xWr,∫

bl f +(l)
0 ψdudvdξ = ∇yWl,∫

br f +(r)
0 ψdudvdξ = ∇yWr .

Then the time derivative Al,r can be obtained through,∫
Al,r f +(l,r)

0 ψdudvdξ = −
∫ (

u
∂ f +(l,r)

∂x
+ v

∂ f +(l,r)

∂ y

)
ψdudvdξ

= −
∫

(al,ru + bl,r v) f +(l,r)
0 ψdudvdξ.

Since the equilibrium distribution function f + around a cell interface can be constructed in the same way as that in Eq. (9), 
the corresponding interface distribution function becomes,
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Fig. 3. Numerical results of UGKS with Boltzmann-Shakhov explicit-implicit operator, UGKS with Shakhov term only, as well as DSMC for the shear layer 
problem at t = 100τph . For UGKS, dx/� = 2, dt = 3.78 × 10−1τph .

f (0,0, t, u, v, ξ) = (
1 − e−t/τ ) f +

0

+ (
τ (−1 + e−t/τ ) + te−t/τ ) (āL,R u + b̄v) f +

0

+ τ
(
t/τ − 1 + e−t/τ ) Ā f +

0

+ e−t/τ
{
[1 − (t + τ )(ual + vbl)]H[u] f +(l)

0

+[1 − (t + τ )(uar + vbr)][1 − H[u]] f +(r)
0

}
+ e−t/τ

[
−τ Al H[u] f +(l)

0 − τ Ar(1 − H[u]) f +(r)
0

]
.

(36)

The interface distribution function here is a continuous function of particle velocity (u, v), and the fluxes for macroscopic 
variables can be obtained by taking moments of the above distribution function analytically.

3.4. Adaptive unified gas kinetic scheme

In a multiscale flow problem, in order to overcome the computational deficiency and memory burden from a large 
amount of discretized velocity points, it is feasible to combine both continuum and rarefied flow solvers into a single frame-
work with an adaptive continuous-discrete velocity transformation. As shown in Fig. 5, in near-equilibrium flow regions, the 
particle distribution function (PDF) is formulated with a continuous velocity space based on the Chapman-Enskog expansion, 
and only macroscopic flow variables are updated. In non-equilibrium regions, the AUGKS switches to a discretized velocity 
space to follow the evolution of particle distribution function. The continuous and discrete velocity spaces are connected 
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Fig. 4. Numerical results of UGKS with Boltzmann-Shakhov explicit-implicit operator, UGKS with Shakhov term only, as well as DSMC for the shear layer 
problem at t = 781.76τph . For UGKS, dx/� = 10, dt = 1.89τph .

Fig. 5. Schematic of the adaptive scheme for multiscale flow.

with an adaptation interface, at which the continuous solution of distribution function is sorted onto discretized velocity 
points.

In the detailed numerical scheme, the macroscopic conservative variables are updated in Eq. (5), while in the non-
equilibrium region the particle distribution function is updated in Eq. (6). Near the adaptation interface, at every time step 
tn , if there is no recorded discretized distribution function at tn−1 in the newly formed “non-equilibrium” cell (i, j), a local 
discretized velocity mesh will be generated, where the particle distribution function at velocity point (l, m) is given by the 
discrete Chapman-Enskog expansion,

f i, j,l,m = f +
0(i, j,l,m)

[1 − τ (aul + bvm + A)], (37)

where the spatial derivatives (a, b) are related to the averaged reconstructed slopes of macroscopic variables ∇W = (∇Wl +
∇Wr)/2, and then the coefficients (a, b, A) can be determined in the same way as that in Sec. 3.2. In the current scheme, 
the velocity mesh is generated within

u ∈ [U − 3
√

RT , U + 3
√

RT ], v ∈ [V − 3
√

RT , V + 3
√

RT ],
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where (U , V ) is macroscopic flow velocity, T is temperature, and R is the gas constant.
To update the discretized distribution function in the adjacent cell next to the adaptation interface, the interface distri-

bution function from the continuous GKS solution in Eq. (36) is rewritten into the following discrete form,

f (0,0, t, ul, vm, ξ) = (
1 − e−t/τ ) f +

0

+ (
τ (−1 + e−t/τ ) + te−t/τ ) (āL,R ul + b̄vm) f +

0

+ τ
(
t/τ − 1 + e−t/τ ) Ā f +

0

+ e−t/τ
{
[1 − (t + τ )(ula

l + vmbl)]H[ul] f +(l)
0

+[1 − (t + τ )(ula
r + vmbr)][1 − H[ul]] f +(r)

0

}
+ e−t/τ

[
−τ Al H[ul] f +(l)

0 − τ Ar(1 − H[ul]) f +(r)
0

]
,

(38)

and then it can be used to determine the fluxes of macroscopic flow variables and particle distribution function. In this way, 
the fluxes at adaptation interface are fully determined and can be used to update the macroscopic variables in Eq. (5) and 
particle distribution function in Eq. (6).

In the current scheme, the time step is determined by the CFL condition,

	t = CFL
	x	y

umax	y + vmax	x
, (39)

where CFL is the CFL number, and (umax, vmax) is the largest particle velocity in x and y directions.

3.5. Switching criterion of velocity space

The accuracy and efficiency of the current adaptive scheme are based on a proper choice of location of velocity space 
adaptation. The transition from discrete to continuous velocity space must be located in the region where the Navier-Stokes 
solutions provided by the GKS with a continuous velocity space are still valid. In the past, many empirical parameters for 
the breakdown of continuum description have been proposed. Bird [4] proposed a parameter P = D(lnρ)/Dt/ν for the 
DSMC simulation of expansion flows, where ρ is gas density and ν is collision frequency, and the breakdown value of P for 
translational equilibrium is 0.05. Boyd et al. [40] extended the above concept to a gradient-length-local Knudsen number 
KnGLL = �|∇ Q |/Q , where � is the local mean free path and Q is the macroscopic flow quantity of interest, with a critical 
value 0.05. Considering the terms in the Chapman-Enskog distribution function, Garcia et al. [41] proposed a breakdown 
parameter based on dimensionless stress and heat flux B = max(|τ ∗|, |q∗|), with the switching criterion of 0.1. Levermore et 
al. [22] developed non-dimensional matrices from the moments of particle distribution function. The tuning parameter 	V
is then defined as the deviation of the eigenvalues of this matrix from their equilibrium values of unity, with the critical 
value of 0.25.

Since the particle distribution function takes the Chapman-Enskog expansion in the evolution process of the continuous 
GKS solver, here we propose an alternative switching criterion of particle velocity space directly from the Chapman-Enskog 
expansion. For brevity, the one-dimensional case will be used for illustration. When there is no discontinuity inside the flow 
field, the Chapman-Enskog expansion Eq. (35) gives

f (x0, u, t) = f +
0 [1 − τ (au + A)], (40)

where the space-time derivatives a, A can be expanded based on the collision invariants,

a = a1 + a2u + a3
1

2
(u2 + ξ2) = aαψα,

A = A1 + A2u + A3
1

2
(u2 + ξ2) = Aαψα.

The equilibrium distribution function f +
0 is determined by local macroscopic flow variables, and its spatial derivative a can 

be derived in the same way as given in Sec. 3.1 and 3.2, i.e.,

∂W

∂x
=
∫

af +
0 ψdudξ = Mαβaβ,

where ψ is a vector of collision invariants, Mαβ = ∫
f +
0 ψαψβdudξ and a = (a1, a2, a3)

T . The solution of a in one-
dimensional case writes,
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a3 = 4
λ2

3ρ

[
2
∂(ρE)

∂x
− 2U

∂(ρU )

∂x
+ ∂ρ

∂x

(
U 2 − 3

2λ

)]
,

a2 = 2
λ

ρ

[
2
∂(ρU )

∂x
− U

∂ρ

∂x

]
− Ua3,

a1 = 1

ρ

∂ρ

∂x
− Ua2 − 1

2

[
U 2 + 3

2λ

]
a3.

In the current scheme, the spatial derivatives are evaluated through

∂W

∂x
= max

[(
∂W

∂x

)L

,

(
∂W

∂x

)R
]

,

(
∂W

∂x

)L

� Wi − Wi−1

	x− ,

(
∂W

∂x

)R

� Wi+1 − Wi

	x+ ,

(41)

where 	x+ = xi+1 − xi and 	x− = xi − xi−1 are the distances between adjacent cell centers. The time derivative A is related 
to the temporal variation of conservative flow variables respectively, and can be evaluated through,

∂W

∂t
=
∫

A f +
0 ψdu = −

∫
u

∂ f +
0

∂x
ψdu = −

∫
au f +

0 ψdudξ.

Generally, the Navier-Stokes equations can be applied when the Chapman-Enskog expansion is a proper approximation 
of the distribution function in near-equilibrium regime. Therefore, based on the dimensionless collision time and space-time 
variations, a switching criterion for the velocity space transformation can be defined as

B = τ̂max(|â|, | Â|), (42)

where dimensionless variables are defined as,

τ̂ = τ (2RT0)
1/2

L0
, â = aL0, Â = AL0

(2RT0)1/2
, (43)

where R is gas constant, L0 and T0 are reference length and temperature. The current switching criterion B for particle 
velocity space will be tested in numerical experiments.

3.6. Summary

The numerical algorithm of the adaptive unified gas kinetic scheme is as following. In the AUGKS, we follow the evo-
lution of both conservative flow variables and particle distribution function. In near-equilibrium flow regions, the particle 
distribution function is formulated by the Chapman-Enskog expansion with a continuous velocity space, and macroscopic 
flow variables are updated in Eq. (5). For non-equilibrium flows, besides the update of macroscopic variables, the particle 
distribution function is updated as well in Eq. (6). The scale-dependent flux function is determined by the particle distri-
bution function at the interface, which comes from the integral solution of kinetic model equation in Eq. (4). In each time 
step, the domain of continuous and discrete velocity space is specified by Eq. (42), and the corresponding interface fluxes 
are provided by Eq. (10) with discrete velocity space in UGKS, by Eq. (38) with discrete velocity space in GKS, and by 
Eq. (36) with continuous velocity space in GKS. The detailed numerical procedures for AUGKS are given in Fig. 6.

4. Numerical experiments

In this section, we are going to test the performance of the current AUGKS. In order to demonstrate the multiscale nature 
of the algorithm, simulations from continuum Euler and Navier-Stokes to free molecule flow are presented. The following 
dimensionless flow variables are used in the calculations,

x̂ = x

L0
, ŷ = y

L0
, ρ̂ = ρ

ρ0
, T̂ = T

T0
, ûi = ui

(2RT0)1/2
,

Û i = Ui

(2RT0)1/2
, f̂ = f

ρ0(2RT0)3/2
, P̂ i j = Pij

ρ0(2RT0)
, q̂i = qi

ρ0(2RT0)3/2
,

where ui is the particle velocity, Ui is the macroscopic flow velocity, Pij is the stress tensor, qi is the heat flux. The subscript 
zero represents the reference state. For simplicity, the hat notation for dimensionless variables will be removed henceforth. 
Argon gas is used in the simulation with the variable hard sphere (VHS) molecule model, and the dynamic viscosity is 
related to the Knudsen number in the reference state via
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Fig. 6. Numerical algorithm of AUGKS.

μref = 5(α + 1)(α + 2)
√

π

4α(5 − 2ω)(7 − 2ω)
Knref .

In this simulation, we choose α = 1.0 and ω = 0.5 to recover a hard sphere molecule, and the viscosity varies with temper-
ature through

μ = μref

(
T

Tref

)θ

,

where Tref is the reference temperature and θ = 0.81 is the index of viscosity coefficient.

4.1. Density wave propagation

The first case is the propagation of a density wave. The initial condition is set as

ρ = 1.0 + 0.1 sin(2πx), U = 1.0, p = 0.5.

The flow domain is x ∈ [0, 1], with periodic boundary condition. The simulations are performed from reference Knudsen 
number Kn = 0.0001 to 0.1, corresponding to different flow regimes. The velocity space is discretized into 48 uniform 
points for the update of particle distribution function, and the current criterion value for velocity space transformation is 
set as B = 0.0005. In the AUGKS and UGKS, the collision term is solved here by Eq. (11).

First, we use 200 uniform cells in physical space to simulate this problem with different reference Knudsen numbers. The 
density profiles at t = 1.0 are presented in Fig. 7, with the traveling wave solution of inviscid flow presented as reference. 
As plotted, in all cases the AUGKS and original UGKS solutions agree with each other very well. In the continuum regime at 
Kn = 0.0001, the numerical scheme and inviscid theory give the equivalent solution. With an increased Knudsen number, 
the non-equilibrium mechanism dissipates the density inhomogeneity much faster during the wave propagation. As a result, 
the amplitude of density wave decreases and deviates from the inviscid traveling wave solution. In the rarefied case with 
Kn = 0.1, the amplitude of wave at the output time is only 0.65% of its initial value.
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Fig. 7. Density profiles in the wave propagation problem at t = 1.0 at different reference Knudsen numbers.

Then, we compare the numerical errors and convergence orders of AUGKS in different flow regimes. In the computation, 
N uniform cells are used with N = 10, 20, 40, 80, 160. The CFL number is set as 0.2. Due to the lack of theoretical traveling 
wave solutions for viscous flows, the numerical results calculated by UGKS with an extremely fine mesh N = 1280 are used 
to calculate the numerical errors and accuracy of the scheme. The L1, L2 and L∞ errors and convergence orders of the 
current scheme at from Kn = 0.0001 to 0.1 are provided from Table 1 to 4. As analyzed in Sec. 3.2, for near-equilibrium 
flows, the AUGKS should be of second order accuracy. With the mesh refinement, it can be seen that the expected order of 
accuracy is obtained. The existing fluctuations of convergence orders at some mesh sizes are mainly due to the numerical 
errors contained in the reference solutions originally. As the Knudsen number increases to Kn = 0.1, the scheme loses 
second order accuracy. This is because at the moment the collision term in Eq. (11) goes more to the explicit full Boltzmann 
collision operator part, which is only first order accurate in time. Also the hybridization of Boltzmann-Shakhov collision 
term and the full Shakhov based interface flux may introduce slight numerical errors in the transition regime, which is 
shown in Table 4.

Fig. 8 presents the velocity space adaptation inside the flow field at the output instant at different Knudsen numbers. 
As presented, at Kn = 0.0001 the whole flow domain is simulated with continuous velocity space. With increasing Knudsen 
number, the non-equilibrium region enlarges gradually along with the use of discrete velocity space. At Kn = 0.001, the 
flow domain is divided into some sub-zones, where the particle distribution function in large-slope region is fully resolved 
with discretized velocity space. In the crest and through regions with relative flat density distribution, the Chapman-Enskog 
expansion is adopted with a continuous velocity space. With increasing Knudsen number and rarefaction effect, the Navier-
Stokes solutions lose its validity, and the non-equilibrium region occupies the whole domain at Kn = 0.01.

Table 5 presents the CPU time cost and memory load from the current adaptive scheme and original UGKS method. As 
shown, the AUGKS is about 157 times faster than UGKS at Kn = 0.0001, and saves 94% memory requirement. Since the 
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Table 1
Errors and convergence orders of AUGKS in the density wave propagation problem at Kn =
0.0001.

Mesh size L1 error Order L2 error Order L∞ error Order

1/10 2.291004E-2 8.007182E-3 3.544807E-2
1/20 5.011979E-3 2.19 1.239875E-3 2.69 7.765276E-3 2.19
1/40 1.124238E-3 2.16 1.975271E-4 2.65 1.770660E-3 2.13
1/80 1.534212E-4 2.87 1.908457E-5 3.37 2.433087E-4 2.86
1/160 2.704649E-5 2.50 2.367716E-6 3.01 4.238944E-5 2.52

Table 2
Errors and convergence orders of AUGKS in the density wave propagation problem at Kn =
0.001.

Mesh size L1 error Order L2 error Order L∞ error Order

1/10 2.212397E-2 7.751042E-3 3.463524E-2
1/20 5.094110E-3 2.19 1.261715E-3 2.62 8.080559E-3 2.10
1/40 1.013216E-3 2.33 1.789057E-4 2.82 1.635674E-3 2.30
1/80 1.597152E-4 2.67 1.998537E-5 3.16 2.623773E-4 2.64
1/160 2.667065E-5 2.58 2.367358E-6 3.08 4.478313E-5 2.55

Table 3
Errors and convergence orders of AUGKS in the density wave propagation problem at Kn =
0.01.

Mesh size L1 error Order L2 error Order L∞ error Order

1/10 1.673591E-2 5.943374E-3 2.737731E-2
1/20 3.917403E-3 2.09 9.823626E-4 2.60 6.770120E-3 2.02
1/40 9.097435E-4 2.11 1.624696E-4 2.60 1.581946E-3 2.10
1/80 1.511126E-4 2.59 1.927517E-5 3.08 2.759125E-4 2.52
1/160 1.821315E-5 3.05 1.635656E-6 3.56 3.587540E-5 2.94

Table 4
Errors and convergence orders of AUGKS in the density wave propagation problem at Kn =
0.1.

Mesh size L1 error Order L2 error Order L∞ error Order

1/10 9.502463E-4 3.286562E-4 1.476651E-3
1/20 2.006481E-4 2.24 4.966555E-5 2.73 3.182716E-4 2.21
1/40 5.142814E-5 1.96 9.031250E-6 2.46 8.098216E-5 1.97
1/80 1.522531E-5 1.76 1.891497E-6 2.26 2.404696E-5 1.75
1/160 5.105088E-6 1.58 4.483010E-7 2.08 8.067447E-6 1.58

Fig. 8. Velocity space adaptation in the Density wave propagation at the output instant with different reference Knudsen numbers.
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Table 5
CPU time and memory cost in the density wave propagation 
problem at t = 1.

CPU time (s) Memory (kB)

AUGKS UGKS AUGKS UGKS

Kn=0.0001 117.39 18451.00 15976 282592
Kn=0.001 12560.71 18510.30 223678 280564
Kn=0.01 18407.97 18570.53 278590 281632
Kn=0.1 18024.64 18339.93 280992 282012

Fig. 9. Sod shock tube at t = 0.2 with reference Knudsen number Kn = 0.0001.

computational cost is proportional to the mesh points in the velocity space, it is expected that the computational efficiency 
is closely related to the size of non-equilibrium region. When the reference Knudsen number increases to Kn = 0.001, the 
CPU time and memory load of AUGKS increase correspondingly, while it is still more efficient than the original UGKS. As 
the rarefaction degree continues growing at Kn = 0.01 and 0.1, the discrete velocity space is used everywhere in the flow 
domain, and the computational cost in the AUGKS becomes equivalent as the original UGKS.

4.2. Sod shock tube

The next case is the Sod shock tube problem. The flow domain x ∈ [0, 1] is divided into 100 uniform cells. The initial 
condition is set as

ρ = 1.0, U = 0.0, p = 1.0, x ≤ 0.5,

ρ = 0.125, U = 0.0, p = 0.1, x > 0.5.

The simulations are performed with reference Knudsen numbers varying from Kn = 0.0001 to Kn = 1.0, corresponding 
to different flow regimes. The current criterion value for velocity space transformation is set as B = 0.0001. The velocity 
space is discretized into 80 uniform points for the update of particle distribution function. In the AUGKS and UGKS, the 
full Boltzmann collision operator is solved here by the fast spectral method [34]. The numerical solutions at t = 0.2 are 
presented in Fig. 9, 10, 11 and 12. The reference solution of continuum flow is calculated by the continuous GKS solver 
with 1000 cells, and the free molecular flow solution is derived from the collisionless Boltzmann equation.

In the simulation, the region with initial homogeneous spatial distribution of flow variables is calculated with a contin-
uous velocity space, except at the central discontinuity the flow is simulated with a discretized velocity. As time evolves, 
the non-equilibrium region enlarges along with the use of discrete velocity space. As presented in Fig. 13a, at Kn = 0.0001
and t = 0.2, the flow domain is divided into some subzones, where the non-equilibrium particle distribution function inside 
rarefaction wave, contact discontinuity, and shock wave is fully resolved with the discretized velocity space, while in the 
rest near-equilibrium regions the Chapman-Enskog expansion is adopted over a continuous velocity space. The solutions 
of AUGKS at Kn = 0.0001 and t = 0.2 are presented in Fig. 9a, 9b, 9c, which match the benchmark continuum and UGKS 
solutions accurately. As the Knudsen number gets to Kn = 0.001 at t = 0.2, near-equilibrium region confines to a small part 
near the left tube boundary, where the distribution function has a continuous velocity space, which is shown in Fig. 13b. 
With increasing rarefaction effect, the distributions of flow variables deviate from the NS solutions gradually and tend to 
collisionless Boltzmann solutions. As the reference Knudsen number gets to Kn = 0.01, the Navier-Stokes solutions lose its 
validity quickly from the initial condition, and the non-equilibrium region occupies the whole tube at t = 0.2. The numerical 
solution approaches to the collisionless Boltzmann solution at Kn = 1.0, as shown in Fig. 11 and 12.

This test case illustrates the capacity of AUGKS to simulate flow in different regimes. The asymptotic preserving (AP) 
property is confirmed in the two limiting solutions. With increasing reference Knudsen number, there is a smooth transition 
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Fig. 10. Sod shock tube at t = 0.2 with reference Knudsen number Kn = 0.001.

Fig. 11. Sod shock tube at t = 0.2 with reference Knudsen number Kn = 0.01.

Fig. 12. Sod shock tube at t = 0.2 with reference Knudsen number Kn = 1.0.

from the Euler solution of the Riemann problem to collisionless Boltzmann solution. Table 6 presents the CPU time and 
memory cost at the output instant t = 0.2 from the current adaptive scheme and original UGKS method. As shown, the 
AUGKS is about 3.63 times faster than UGKS at Kn = 0.0001, and saves 48% memory load. When the degree of rarefaction 
increases, the CPU time of AUGKS increases correspondingly, while it is still more efficient than the original UGKS.

4.3. Rayleigh flow

A Rayleigh flow forms over a plate which suddenly acquires a constant parallel velocity and temperature. In this test case, 
we follow the setup by Sun [42]. As shown in Fig. 14, the argon gas is at rest and has a unit temperature initially. When 
t > 0, the plate suddenly moves with a constant velocity U w = 0.0296 and temperature T w = 1.36. The momentum and 
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Fig. 13. Velocity space adaptation inside the shock tube at t = 0.2.

Table 6
CPU time and memory cost in the Sod shock tube case at 
t = 0.2.

CPU time (s) Memory (kB)

AUGKS UGKS AUGKS UGKS

Kn=0.0001 2042.98 7421.70 98960 190448
Kn=0.001 3537.73 7430.82 154988 188428
Kn=0.01 4692.52 7547.99 186860 188420
Kn=0.1 5694.46 7275.40 184836 188432

Fig. 14. Schematic of Rayleigh problem.

energy are transported into the flow field through a shearing effect in the unsteady process. A physical domain y ∈ [0, 1]
with 100 uniform cells are set up for the simulation, and the 32 uniform points are used in the velocity space, where the 
particle distribution function is updated directly. In this case, the full Boltzmann collision operator in the AUGKS and UGKS 
is calculated by the fast spectrum method [34]. The current switching criterion of velocity space is set as B = 0.0001.

Numerical simulations are performed with a series of reference Knudsen number, and solutions at same output times 
are plotted in Fig. 15, 16, 17 and 18. Besides AUGKS solutions, the UGKS and DSMC results with full Boltzmann collision 
operator are also provided as benchmarks. With Maxwell’s fully accommodation boundary condition, Bird [4] proposed an 
analytical solution from the collisionless Boltzmann equation when the time is much less than the reference mean collision 
time τ0 = �0/v0, where �0 is particle mean free path and v0 is the mean molecular speed. The analytical collisionless 
solution is also plotted in figures.

As presented in Fig. 15, 16, 17 and 18, for the case at Kn = 2.66 and t = 0.1τ0, the AUGKS recovers exact collisionless 
Boltzmann solution. In the transition regime Kn = 0.266 and Kn = 0.0266 at t = τ0 and t = 10τ0, the numerical solutions 
deviate from collisionless solutions gradually due to increasing intermolecular collisions. At t = 100τ0 and Kn = 0.00266
corresponding to a near-continuum regime, the current adaptive scheme recovers the Navier-Stokes solutions with intensive 
intermolecular collisions. As plotted, in all cases the AUGKS solutions agree well with the benchmark solutions from DSMC 
and UGKS. It is worth mentioning that in comparison with DSMC method, the current Boltzmann-equation-based adaptive 
unified scheme has no statistical scattering, which is beneficial in low speed simulations.
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Fig. 15. Rayleigh flow at t = 0.1τ0 with reference Knudsen number Kn = 2.66.

Fig. 16. Rayleigh flow at t = τ0 with reference Knudsen number Kn = 0.266.

Fig. 17. Rayleigh flow at t = 10τ0 with reference Knudsen number Kn = 0.0266.

Fig. 19 presents the velocity space adaptation inside the flow domain at the output time. In the case with Kn = 0.00266, 
in the near-wall region with large slope of macroscopic variables, the AUGKS uses a discrete velocity space, while a con-
tinuous velocity space is used in the outer region. As the Knudsen number increases, the enhanced dimensionless viscosity 
and heat conductivity lead to a large non-equilibrium region. As a result, the non-equilibrium region enlarges faster. For 
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Fig. 18. Rayleigh flow at t = 100τ0 with reference Knudsen number Kn = 0.00266.

Fig. 19. Velocity space adaptation in the Rayleigh flow at the output instant with different reference Knudsen numbers.

Table 7
CPU time and memory cost in the Rayleigh problem.

CPU time (s) Memory (kB)

AUGKS UGKS AUGKS UGKS

Kn=0.00266 1003.59 7477.10 184937 543232
Kn=0.0266 2223.62 7460.21 358828 539140
Kn=0.266 3751.75 7438.06 544128 540796
Kn=2.66 4637.19 7457.87 537760 543828

the case Kn = 0.266, in all flow region the distribution function deviates from the Chapman-Enskog solution and its evolu-
tion must be followed with a discretized velocity space. Table 7 presents the computational cost of the AUGKS and UGKS. 
When Kn = 0.00266, the AUGKS is 7.45 times faster than the original UGKS, with a 66% memory reduction. When the 
Knudsen number increases, the enhanced non-equilibrium regions increase the computational cost of AUGKS. From the cur-
rent numerical experiments, it is clear that the AUGKS provides a self-adjusted algorithm from continuum to rarefied flow 
simulation with the consideration of both accuracy and efficiency.

4.4. Nozzle flow

The nozzle flow connecting different flow regimes is an ideal case to test the capacity of AUGKS in capturing multiple 
scale flow dynamics. The schematic of the nozzle problem is presented in Fig. 20. The argon gas is enclosed in a rectangular 
box x ∈ [0, 2.2], y ∈ [−0.5, 0.5]. The velocity space is discretized into 28 × 28 uniform points for the update of particle 
distribution function. The switching criterion of velocity space in this case is set as B = 0.0005. In this case, the collision 
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Fig. 20. Schematic of Nozzle jet problem.

Fig. 21. Density and Temperature contours at t = 5τ0 (upper flood: AUGKS, upper lines: UGKS, lower: GKS).

term in AUGKS and UGKS is the Shakhov model. The computational domain is divided into two parts which are connected 
through a nozzle. The gas density in the left is 100 times higher than that in the right part, and the initial Knudsen 
numbers are KnL = 0.0001 and KnR = 0.01 respectively. The initial gas is at rest and has the same temperature inside two 
subdomains, same as the cavity wall. The Maxwell’s diffusive boundary condition is used at all walls. The nozzle entrance 
has a variable cross section from 	yL = 0.13 to 	yR = 0.33 along a length 	x = 0.14, from which a jet flow will be 
formed. The simulation is performed till t = 50τ0, where τ0 = �0/v0 is the mean collision time of initial argon gas in the 
right domain.

Fig. 21 and 22 present the solution contours of U−velocity and temperature at two times t = 5τ0 and t = 20τ0. The 
upper part of color contours are the results calculated by the AUGKS (flood) and UGKS (lines), while the lower part is 
the Navier-Stokes solutions provided by the GKS only with a continuous velocity space. As shown in the figures, the bow 
shock and expansion cooling region behind shock are captured by all methods. However, it is clear that at Kn = 0.01, the 
Navier-Stokes equations lose validity to quantitatively describe the flow evolution in the right domain, and it is necessary 
to use kinetic method to get accurate solutions here. Fig. 23 and 24 present the solutions along the horizontal center line 
of the box at times t = 5τ0 and t = 20τ0. It is clear that the AUGKS provides equivalent solutions as the NS ones in the 
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Fig. 22. Density and Temperature contours at t = 20τ0 (upper flood: AUGKS, upper lines: UGKS, lower: GKS).

Fig. 23. Solutions along the horizontal central line at t = 5τ0.

near-equilibrium left region, and with the Boltzmann solutions in the non-equilibrium right region. This test demonstrates 
the multiscale capability of the adaptive method to get the physical solutions in the corresponding flow regimes.

Fig. 25, 26 and 27 present the components of spatial slope a used in the velocity space switching criterion, the mean 
collision time, and the corresponding velocity space adaptation of the flow domain at three times t = τ0, 5τ0, 20τ0. As 
shown in the figures, the shock and expansion waves are the major sources for large flow gradients inside the domain. 
Accompanying with the high-density jet into the right domain, the mean collision time decreases in the jet region. With 
time increasing, the local flow structure becomes more complicated, leading to a large non-equilibrium region. As a result, 
the Chapman-Enskog expansion fails in the places where the strong non-equilibrium effects appear, and the discretized 
velocity space has to be used in AUGKS. Table 8 presents the computational cost of AUGKS, UGKS and GKS in this case. 
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Fig. 24. Solutions along the horizontal central line at t = 20τ0.

Fig. 25. Velocity space adaptation in the nozzle flow at t = τ0.
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Fig. 26. Velocity space adaptation in the nozzle flow at t = 5τ0.

Table 8
CPU time and memory cost in the nozzle flow.

AUGKS UGKS GKS

CPU time (s) 526.25 898.69 35.25
Memory (kB) (t = 0) 3614 74828 2636
Memory (kB) (t = 50τ0) 35125 74836 2640

With the current setup of physical mesh and velocity space, the continuous GKS solver is about 25 times faster than UGKS 
with discretized velocity space. The AUGKS is 1.7 times faster than the original UGKS. At the initial stage in the simulation, 
the memory cost in the AUGKS is on the same order as the GKS, which is about 1/30 of the UGKS. As flow evolves, the 
number of cells associated with discretized velocity space increases, and the corresponding memory cost gets higher. At 
the final time t = 50τ0, there are about 429 out of 914 total cells using continuous velocity space, and the corresponding 
memory size is 53% of the original UGKS.

4.5. Flow around circular cylinder

In the previous studies, the AUGKS in the simulation of unsteady flows is well validated. In this case, the flow passing 
through a circular cylinder is used to test the performance of current adaptive scheme for steady flow. The incoming gas 
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Fig. 27. Velocity space adaptation in the nozzle flow at t = 20τ0.

has a uniform velocity with Mach number Ma = 5 and the same temperature, such as T = 273 K, as the cylinder surface. 
The reference Knudsen number is set up as Kn = 0.001 and Kn = 0.01 relative to cylinder radius, and the corresponding 
dynamic viscosity is μref = 7.313 × 10−4 and μref = 7.313 × 10−3. In the calculation, 60 cells in radial direction and 100
cells in circumferential direction are used in physical domain. The velocity space is discretized into 41 × 41 velocity points 
for the update of particle distribution function. In this case, the collision term for particle distribution function in AUGKS 
and UGKS is modeled as the Shakhov model. The Maxwell’s diffusive boundary condition is used at the surface of the 
cylinder. The switching criterion of particle velocity space is set as B = 0.0005.

For steady problem, the computational time can be further reduced with the help of the GKS with a continuous velocity 
space. A convergent coarse flow field can be first obtained by the GKS, and then used as the initial state in the subsequent
adaptive method. The method for the computation of steady flow is the following.

1. From initial setup, use the GKS solver in the entire domain and obtain a convergent flow field.
2. Use the calculated macroscopic flow variables as the initial flow condition to get the particle distribution function with 

the discretized Chapman-Enskog form by Eq. (37).
3. Adapt the velocity space based on the current switching criterion in Eq. (42).
4. Use continuous velocity space in near-equilibrium flow region and discretized velocity space in non-equilibrium one, 

and continue the velocity adaptation with iterations until a convergent flow field is obtained.
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Fig. 28. Density and Temperature contours in the flow passing through cylinder at Kn = 0.001 (upper flood: AUGKS, upper lines: UGKS, lower flood: GKS).

Fig. 29. Density and Temperature contours in the flow passing through cylinder at Kn = 0.01 (upper flood: AUGKS, upper lines: UGKS, lower flood: GKS).

Fig. 28 and Fig. 29 present the solution contours of U−velocity and temperature calculated by the AUGKS, UGKS and 
GKS methods respectively around the cylinder. The upper part of contours is the results of AUGKS (flood) and UGKS (solid 
line) solutions, and the lower part is the GKS solutions. As shown, the bow shock and expansion cooling region behind 
shock are well captured by all methods.

Fig. 30, 31, 32, 33 present the solutions along the horizontal center line in front of and behind the cylinder. At Kn =
0.001, the cell size and time step in the computation are much larger than particle mean free path and collision time. Due to 
the limited time-space resolution, all three methods become shock-capturing schemes, and a sharp shock profile is obtained 
in front of the cylinder in Fig. 30. Near the cylinder wall, due to the non-equilibrium gas dynamics in gas-surface interaction, 
there is a slight difference in the solutions provided by UGKS and GKS. At the same time, the gas density reduces a lot in 
the wake region behind cylinder with emerging rarefied regions, and there is a significant difference between UGKS and 
GKS solutions in Fig. 31.

When the reference Knudsen number gets to Kn = 0.01, a large particle mean free path leads to a wide shock structure. 
This non-equilibrium evolution is provided in the scale-dependent interface solution used in AUGKS and UGKS. However, 
the Chapman-Enskog expansion can only provide incomplete information about this process in continuous GKS solver. As a 
result, the GKS presents a narrower shock profile than that in AUGKS and UGKS in Fig. 32. In the wake region, due to the 
enlarged particle collision time at Kn = 0.01, the results provided by GKS differ significantly from AUGKS and UGKS solu-
tions. The GKS with a continuous velocity space fails to predict physical solutions in these regions, and particle distribution 
function is updated explicitly in the AUGKS with a discretized particle velocity space. It is clear that the current velocity 
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Fig. 30. Solutions along the horizontal central line in front of cylinder at Kn = 0.001.

Fig. 31. Solutions along the horizontal central line behind cylinder at Kn = 0.001.

Fig. 32. Solutions along the horizontal central line in front of cylinder at Kn = 0.01.

adaptive unified scheme captures the physical solutions as the NS in the near-equilibrium region and the UGKS ones in the 
non-equilibrium region.

Fig. 34 and 35 present two components of spatial slope a used in the velocity-space switching criterion, the mean 
collision time, and the adaptation of velocity space. As can be seen, the shock wave and boundary are two sources for 
high gradients of flow variables, leading to the failure of Chapman-Enskog expansion and Navier-Stokes solutions. Behind 
the cylinder, the low density wake leads to an increased particle collision time, which is shown in Fig. 34c and Fig. 35c. 
Therefore, a velocity adaptation is determined as shown in Fig. 34d and Fig. 35d. The incoming flow as well as a small region 
between the bow shock and cylinder is computed with continuous velocity space, while the rest non-equilibrium region are 
simulated by the UGKS with discrete velocity space. Due to an increased particle collision time, the non-equilibrium region 
with discrete particle velocity space is enlarged at Kn = 0.01 than that at Kn = 0.001.
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Fig. 33. Solutions along the horizontal central line behind cylinder at Kn = 0.01.

Fig. 34. Velocity space adaptation in the flow domain at Kn = 0.001.

Table 9
CPU time and memory cost in the flow around circular cylinder.

CPU time (s) Memory (kB)

AUGKS UGKS GKS AUGKS UGKS GKS

Kn=0.001 36130.68 117371.67 2975.07 452508 857520 14652
Kn=0.01 22145.10 75510.33 2536.55 614542 856944 12636

Table 9 presents the computational cost of AUGKS, UGKS and GKS at Kn = 0.001 and Kn = 0.01 respectively. With the 
current setup of physical mesh and velocity space, the continuous GKS solver is about 30 times faster than the UGKS, and 
the AUGKS is about 3.3 times faster than the original UGKS in this steady flow problem. In the convergent steady state, 
there are about 3196 cells at Kn = 0.001 and 1992 cells at Kn = 0.01 out of 6000 total cells using continuous velocity 
space, and the corresponding memory size is about 47% and 67% of that in the original UGKS.
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Fig. 35. Velocity space adaptation in the flow domain at Kn = 0.01.

5. Conclusion

The gas dynamics has intrinsically multiple scale nature due to the large variations of density and characteristic length 
scale of the flow structures. Based on scale-dependent time evolution solution of the Boltzmann model equation, a velocity-
space adaptive unified gas kinetic scheme has been developed in this paper for the simulation of multiscale flow transport. 
The current adaptive algorithm is based on a dynamic velocity-space transformation, where the particle velocity space is 
continuous in the near-equilibrium region and discrete in the non-equilibrium one. A switching criterion for particle velocity 
space transformation is proposed based on the Chapman-Enskog expansion and is validated through numerical experiments. 
Under a unified framework with the adaptation of particle velocity space only, the AUGKS needs no buffer zone for the 
connection of continuum and kinetic solutions. This compact property leads to an effective method for multiscale flow 
simulation with unsteadiness and complex geometries. Compared with discrete-velocity-space framework of the original 
UGKS, the AUGKS is more efficient and less memory demanding for multiscale flow computations. The AUGKS provides a 
useful tool for non-equilibrium flow studies, and it can be further improved in the future with the combination of implicit 
and multigrid techniques [43,44].
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Appendix A. Nomenclature

Here a nomenclature used in AUGKS is provided in defining the constants, variables, and functions (Table 10).
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Table 10
The nomenclature of adaptive unified gas kinetic scheme.

Variables
f particle distribution function
u particle velocity
Q ( f , f ) Boltzmann collision operator
S( f ) Shakhov relaxation operator
Q ( f ) General collision operator
f + Shakhov equilibrium distribution function
W Macroscopic conservative variables
ρ Density
U Macroscopic flow velocity
T Temperature
c Particle peculiar velocity
λ Characteristic quantity with λ = ρ/(2p)

Pr Prandtl number
Kn Knudsen number
ψ Vector of collision invariants
τ Collision time
F Flux of macroscopic conservative variables
ξ Internal degrees of freedom for reduced distribution function
f0 Initial particle distribution function at the beginning of n-th time step
σ Slope of initial distribution function along x direction
θ Slope of initial distribution function along y direction
āL,R Leftward/Rightward slopes of equilibrium distribution function along x direction
b̄ Slope of equilibrium distribution function along y direction
Ā Time derivative of equilibrium distribution function
H[x] Heaviside step function
al,r Leftward/Rightward slopes of distribution function along x direction in Chapman-Enskog expansion
bl,r Leftward/Rightward slopes of distribution function along y direction in Chapman-Enskog expansion
Al,r Leftward/Rightward time derivatives of distribution function in Chapman-Enskog expansion
a Slope of distribution function along x direction in Chapman-Enskog expansion in continuous case
b Slope of distribution function along y direction in Chapman-Enskog expansion in continuous case
A Time derivative of distribution function in Chapman-Enskog expansion in continuous case
B Switching criterion for velocity space transformation
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