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Gaseous flows show a diverse set of behaviors on different characteristic scales. Given the 
coarse-grained modeling in theories of fluids, considerable uncertainties may exist between 
the flow-field solutions and the real physics. To study the emergence, propagation and 
evolution of uncertainties from molecular to hydrodynamic level poses great opportunities 
and challenges to develop both sound theories and reliable multi-scale numerical algo-
rithms. In this paper, a new stochastic kinetic scheme will be developed that includes 
uncertainties via a hybridization of stochastic Galerkin and collocation methods. Based 
on the Boltzmann-BGK model equation, a scale-dependent evolving solution is employed 
in the scheme to construct governing equations in the discretized temporal-spatial 
domain. Therefore typical flow physics can be recovered with respect to different physical 
characteristic scales and numerical resolutions in a self-adaptive manner. We prove that 
the scheme is formally asymptotic-preserving in different flow regimes with the inclusion 
of random variables, so that it can be used for the study of multi-scale non-equilibrium 
gas dynamics under the effect of uncertainties.
Several numerical experiments are shown to validate the scheme. We make new physical 
observations, such as the wave-propagation patterns of uncertainties from continuum to 
rarefied regimes. These phenomena will be presented and analyzed quantitatively. The 
current method provides a novel tool to quantify the uncertainties within multi-scale flow 
evolutions.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Hilbert’s 6th problem [1] has served as an intriguing beginning of trying to describe the behavior of interacting many-
particle systems, including the gas dynamic equations, across different scales. It has been shown since then that some 
hydrodynamic equations can be derived from the asymptotic limits of kinetic solutions [2–7].

Multi-scale kinetic algorithms aim at a discretized Hilbert’s passage between scales. Instead of coupling physical laws 
at different scales, asymptotic-preserving (AP) methods are based on solving kinetic equations uniformly, with connection 
to their hydrodynamic limits. When the mesoscopic structure cannot be resolved by the current numerical resolution, the 
scheme mimics the collective behaviors of kinetic solutions at hydrodynamic level in a self-adaptive manner. This scale-
bridging property has been validated to be feasible in various AP schemes [8–15], among them unified gas-kinetic schemes 
(UGKS) [16–19], and high-order/low-order (HOLO) algorithms [20].
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So far most kinetic schemes have been constructed for deterministic solutions. Given the coarse-grained approximation 
in fluid theories and errors from numerical simulations, considerable uncertainties may be introduced inevitably. A typical 
example is the collision kernel employed in the kinetic equations, which measures the strength of particle collisions in 
different directions. Even if scattering theory provides a one-to-one correspondence between the intermolecular potential 
law and its collision kernel, the differential cross sections become too complicated except for simple Maxwell and hard-
sphere molecules. As a result, phenomenological models, e.g. the Lennard-Jones molecules [21], have to be constructed to 
reproduce the correct coefficients of viscosity, conductivity and diffusivity. The adjustable model parameters need to be 
calibrated by experiments, which introduce errors into the simulations that ought to be deterministic. How predictive are 
the simulation results from the idealized models? How can one explicitly assess the effects of uncertainties on the quality 
of model predictions? To answer such questions lies at the core of uncertainty quantification (UQ).

Although the UQ field has undergone rapid development over the past few years, its applications on computational fluid 
dynamics mainly focus on macroscopic fluid dynamic equations with standard stochastic settings. Limited work has been 
conducted either on the Boltzmann equation at kinetic scale or on the evolutionary process of uncertainty in multi-scale 
physics [22–24]. Given the nonlinear system including intermolecular collisions, initial inputs, fluid-surface interactions and 
geometric complexities, uncertainties may emerge from molecular-level nature, develop upwards, affect macroscopic collec-
tive behaviors, and vice versa. To study the emergence, propagation and evolution of uncertainty poses great opportunities 
and challenges to develop both sound theories and reliable multi-scale numerical algorithms.

Generally, the methods for UQ study can be classified into intrusive and non-intrusive ones, depending on the methodol-
ogy to treat random variables. Monte-Carlo sampling (MCS) is the simplest non-intrusive method, in which many realizations 
of random inputs are generated based on the prescribed probability distribution. For each realization we solve a deter-
ministic problem, and then post-processing is employed to estimate uncertainties. MCS is intuitive and straightforward to 
implement, but a large number of realizations are needed due to the slow convergence with respect to sampling size. This 
remains true for other variants of MCS like quasi or multi-level Monte-Carlo, which differ in the nodes and weights that are 
used in the postprocessing.

On the other hand, intrusive methods work in a way such that we reformulate the original deterministic system. One 
commonly used intrusive strategy is the stochastic Galerkin (SG) method [25], in which the stochastic solutions are ex-
pressed into orthogonal polynomials of the input random parameters. As a spectral method in random space, it promises 
spectral convergence when the solution depends smoothly on the random parameters [26–29]. However, in the Galerkin 
system all the expansion coefficients are nearly always coupled, which becomes cumbersome in complicated systems with 
strong nonlinearity.

The stochastic collocation (SC) method [30–32], although a non-intrusive method, can be seen as a middle way. It com-
bines the strengths of non-intrusive sampling and SG by evaluating the generalized polynomial chaos (gPC) expansions [25]
on quadrature points in random space. As a result, a set of decoupled equations can be derived and solved with deter-
ministic solvers on each quadrature point. The SC methods maintain similar convergence as SG provided that the solutions 
possess sufficient smoothness over random space, but suffers from aliasing errors due to limited number of quadrature 
points.

The stochastic collocation (SC) and stochastic Galerkin (SG) methods can be combined when the integrals that are nec-
essary for SG inside the algorithm are computed numerically using SC. Tracking the evolution of phase-space variables with 
quadrature rules is very similar in spirit to kinetic schemes to solve kinetic equations. This is the main idea of this paper: 
to solve an intrusive SG system for the Bhatnagar-Gross-Krook (BGK) equation [33] by using SC, and by combining this with 
the integration that is necessary in particle velocity space to update macroscopic conservative flow quantities. Similar to 
the unified gas-kinetic schemes (UGKS) [16,17], a scale-dependent interface flux function in the SG setting is constructed 
from the integral solution of the BGK equation, which considers the correlation between particle transport and collisions. 
We thus combine the advantages of SG and SC methods with the construction principle of kinetic schemes, and obtain an 
efficient and accurate scheme for multi-scale flow transport problems with uncertainties.

The rest of this paper is organized as follows. Sec. 2 is a brief introduction of gas kinetic theory and its stochastic 
formulation. Sec. 3 presents the numerical implementation of the current scheme and detailed solution algorithm. Sec. 4
includes numerical experiments to demonstrate the performance of the current scheme and analyze some new physical 
observations. The last section is the conclusion.

2. Stochastic kinetic theory of gases

2.1. Kinetic theory

The Boltzmann equation describes gas dynamics by tracking the temporal-spatial evolution of particle distribution func-
tion f (t, x, u), where x ∈ R3 is space variable and u ∈ R3 is particle velocity. In the absence of an external force field, the 
deterministic Boltzmann equation for a monatomic dilute gas writes,

∂ f

∂t
+ u · ∇x f = Q ( f , f ) =

∫
3

∫
2

[
f (u′) f (u′

1) − f (u) f (u1)
]
B(cos θ, g)d�du1, (1)
R S

2
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where u, u1 are the pre-collision velocities of two colliding particles, and u′, u1
′ are the corresponding post-collision veloc-

ities. The collision kernel B(cos θ, g) measures the strength of collisions in different directions, where θ is the deflection 
angle and g = |g| = |u − u1| is the magnitude of relative pre-collision velocity, and � is the unit vector along the relative 
post-collision velocity u′ − u1

′ , and the deflection angle θ satisfies the relation cos θ = � · g/g .
Now let us consider the gas evolution with stochastic parameters, e.g. the collision kernel B(cos θ, g, z) with random 

variable z ∈Rd of d dimensions, then the Boltzmann equation becomes,

D

Dt
f (t,x,u, z) = Q ( f , f )(t,x,u, z), (2)

where D/Dt denotes the material derivative terms on the left-hand side of Eq. (1). The macroscopic conservative flow 
variables are related to the moments of the particle distribution function over velocity space,

W(t,x, z) =
⎛⎝ ρ

ρU
ρE

⎞⎠ =
∫

f ψdu, (3)

where ψ = (
1,u, 1

2 u2
)T

is a vector of collision invariants, and temperature is defined as

3

2
kT (t,x, z) = 1

2n

∫
(u − U)2 f du, (4)

where k is the Boltzmann constant and n is number density of the gas. Regardless of the value of the collision kernel in 
random space, the collision operator satisfies the compatibility condition,∫

Q ( f , f )ψdu = 0. (5)

Substituting the H function,

H(t,x, z) = −
∫

f ln f du,

into the Boltzmann equation we have

∂ H

∂t
= −

∫
(1 + ln f )

∂ f

∂t
du = −

∫∫∫
(1 + ln f )

(
f ′ f ′

1 − f f1
)
Bd�dudu1. (6)

From the H-theorem [34] we know that entropy is locally maximal when f is a Maxwellian

M(t,x,u, z) = ρ

(
λ

π

) 3
2

e−λ(u−U)2
, (7)

where λ = m/(2kT ). The macroscopic variables {ρ(t, x, z), U(t, x, z), λ(t, x, z)} vary in random space.
Due to the complicated fivefold integration in the Boltzmann collision operator, simplified kinetic model equations can 

be constructed, e.g. the Bhatnagar-Gross-Krook (BGK) model. The BGK relaxation operator can be planted into the current 
stochastic system similarly, which writes,

ft + u · ∇x f = Q ( f ) = ν(M− f ). (8)

Given a random collision kernel B(cos θ, g, z), the collision frequency here is also a function of random variable ν(z). 
The BGK model simplifies the computation significantly, but still possesses some key properties of the original Boltzmann 
equation, e.g., the H-theorem. In this paper, we will only conduct numerical simulations with the BGK relaxation term.

2.2. Generalized polynomial chaos of kinetic equation

Consider the generalized polynomial chaos (gPC) expansion of particle distribution with degree N , i.e.,

f (t,x,u, z) � f N =
N∑

|i|=0

f̂ i(t,x,u)
i(z) = f̂
T
�, (9)

where the K -dimensional index takes the form i = (i1, i2, · · · , iK ) and |i| = i1 + i2 + · · · + iK . The f̂ i is the coefficient of 
i-th polynomial chaos expansion, and the basis functions used are orthogonal polynomials {
i(z)} satisfying the following 
constraints,

E[
j(z)
k(z)] = γkδjk, 0 ≤ |j|, |k| ≤ N, (10)
3
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where

γk = E[
2
k(z)], 0 ≤ |k| ≤ N,

are the normalization factors. The expectation value defines a scalar product,

E[
j(z)
k(z)] =
∫
Iz


j(z)
k(z)(z)dz, (11)

for continuous distribution of z and

E[
j(z)
k(z)] =
∑

i


j(zi)
k(zi)w(zi), (12)

for discrete distribution, where (z) is the probability density function, and w(z) is the corresponding quadrature weight 
function in random space. In the following we use the notation 〈
j
k〉 to denote the integration formulas in Eq. (11) and 
(12) uniformly.

Given the correspondence between macroscopic and mesoscopic variables, from Eq. (3) we can derive,

W �
∫

f Nψdu =
∫ N∑

i

f̂ i(t,x,u)
i(z)ψdu =
∑

i

(∫
f̂ iψdu

)

i

� WN =
N∑
i

ŵi
i,

(13)

and the compatibility condition is satisfied∫
Q ( f N)ψdu = 0. (14)

After substituting the Eq. (9) into the kinetic equation (1) and (8), and performing a Galerkin projection, we then obtain

∂ f̂ i

∂t
+ u · ∇x f̂ i = Q̂ i ( f N) , (15)

where Q i is the i-th projection of the collision operator onto the basis polynomials. We assume the same gPC expansion 
for the collision frequency,

νN =
N∑

|i|=0

ν̂i
i, (16)

and thus the collision term becomes,

Q̂ i( f N) =
∑N

j
∑N

k ν̂jm̂k〈
j
k
i〉 −∑N
j
∑N

k ν̂j f̂k〈
j
k
i〉
〈
2

i 〉
, (17)

with m̂k and ν̂j being the coefficients of gPC expansions for the Maxwellian distribution and collision frequency.

2.3. Equilibrium distribution in generalized polynomial chaos

For a deterministic system, the evaluation of the Maxwellian distribution given in Eq. (7) is straight-forward. However, 
given a generalized polynomial chaos (gPC) system, the multiplication and division can’t be operated directly on the stochas-
tic moments without modifying the orthogonal basis. Starting from a known particle distribution function in Eq. (9), here 
we draw a brief outline to approximately evaluate the Maxwellian distribution function in the gPC expansion.

1. Derive the macroscopic conservative variables from particle distribution function with gPC expansion,

WN =
⎛⎝ ρN

(ρU)N

(ρE)N

⎞⎠ =
N∑
i

(∫
f̂ iψdu

)

i; (18)

2. Locate conservative variables on quadrature points z j of random space and calculate primitive variables, e.g. flow 
velocity
4
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U(z j) = (ρU)N (z j)

ρN(z j)
, (19)

and

λ(z j) = 3ρN(z j)

4[(ρE)N (z j) − (ρU )2
N (z j)/2ρN(z j)]

; (20)

3. Calculate Maxwellian distribution on quadrature points

M(u, z j) = ρN(z j)

(
λ(z j)

π

) 3
2

e−λ(z j)(u−U(z j))
2
, (21)

and decompose it into a gPC expansion

MN =
N∑

|i|=0

m̂i
i, (22)

with each coefficient in the expansion being given by a quadrature rule

m̂i = 〈M,
i〉
〈
2

i 〉
=

∑
j M(z j)
i(z j)p(z j)∫
Iz
(
i(z))2 p(z)dz

. (23)

Note that as a case of particle distribution function, the Maxwellian distribution certainly has one-to-one correspondence 
with macroscopic variables,

WN =
⎛⎝ ρN

(ρU)N

(ρE)N

⎞⎠ =
⎛⎜⎝

∑N
i ρ̂i
i∑N

i (ρ̂U)i
i∑N
i (ρ̂E)i
i

⎞⎟⎠ =
N∑

|i|=0

(∫
m̂iψdu

)

i. (24)

Furthermore, the compatibility condition (5) still holds for the gPC-expanded collision term (17), i.e.∫
Q̂ i( f N)ψdu = 1

〈
2
k〉

⎛⎝∫ N∑
j

N∑
k

ν̂jm̂k〈
j
k
i〉ψdu

−
∫ N∑

j

N∑
k

ν̂j f̂k〈
j
k
i〉ψdu

⎞⎠
=0.

(25)

2.4. Asymptotic limits

The BGK equation (8) can be rewritten into a successive form,

f = M− τ D f = M− τ D(M− τ D f ) = · · · , (26)

where D denotes the full derivatives along particle trajectories, and τ = 1/ν is the mean relaxation time. Truncating the 
right hand side with respect to τ yields different particle distributions as well as the upscaling solutions. For example, as 
τ → ∞, the contribution from relaxation becomes minor, and the stochastic Galerkin BGK equation (15) becomes

D f̂ = ∂ f̂

∂t
+ u · ∇x f̂ = 0, (27)

which corresponds to the collisionless limit.
On the other hand, as τ → 0, it’s an intuitive idea to truncate the first-order terms. The compatibility condition of 

collision term leads to∫ ⎛⎝ 1
u

1
2 u2

⎞⎠(
m̂t + u · ∇xm̂

)
du = 0, (28)

and the corresponding hydrodynamic equations yields
5
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∂

∂t

⎛⎝ ρ̂
ˆ(ρU )
ˆ(ρE)

⎞⎠+ ∇x ·
⎛⎝ F̂ ρ

F̂ m

F̂ e

⎞⎠ = 0, (29)

where { F̂ ρ, F̂ m, F̂ e} are the gPC coefficients vector of fluxes for density, momentum and energy.
As discussed in literature [35], the above stochastic Euler equations may not necessarily be hyperbolic. In the following, 

we are going to analyze the hyperbolicity of the current hydrodynamic system. We follow the paradigm proposed in [24], 
and consider small stochasticity in one-dimensional case first. Therefore, the particle distribution function in gPC expansion 
can be written as,

f (t, x, u, z) � f N = f̂0(t, x, u) + ε

N∑
i=1

f̂ i(t, x, u)
i(z), (30)

where ε is a small parameter. Taking conservative velocity moments, we get

WN(t, x, u, z) = ŵ0(t, x, u) + ε

N∑
i=1

ŵi(t, x, u)
i(z). (31)

We further assume the expansion forms of U and λ, i.e.,

U N = û0 + ε

N∑
i=1

ûi
i, λN = λ̂0 + ε

N∑
i=1

λ̂i
i . (32)

Expanding the Maxwellian M = ρ (λ/π)1/2 exp(−λ(u − U )2) into Taylor series around {ρ̂0, ̂u0, ̂λ0} in the random space 
yields

M =m̂0 +
(

∂M
∂ρ

∣∣∣∣
ρ̂0

)(
ε

N∑
i=1

ρ̂i
i

)
+

(
∂M
∂U

∣∣∣∣
û0

)(
ε

N∑
i=1

ûi
i

)

+
(

∂M
∂λ

∣∣∣∣
λ̂0

)(
ε

N∑
i=1

λ̂i
i

)
+ O

(
ε2

)

=m̂0

[
1 + ε

N∑
i=1

(
1

ρ̂0
ρ̂i + 2λ̂0

(
u − û0

)
ûi +

(
1

2λ̂0
− (

u − û0
)2
)

λ̂i

)

i

]
+ O

(
ε2

)
,

m̂0 =ρ̂0

(
λ̂0

π

)1/2

e−λ̂0(u−û0)2
.

(33)

Inserting the above expansion into Eq. (28), we get the stochastic Euler equations. Let us write Eq. (29) into compact 
form,

∂ ŵ

∂t
+ ∂ F̂

∂x
= 0, (34)

where the conservative variables and flux vectors are

ŵ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ̂0

ρ̂0Û0
1
2 ρ̂0Û 2

0 + 1
4

ρ̂0

λ̂0
ερ̂1

ε
(
ρ̂1û0 + ρ̂0û1

)
ε
(

1
2 ρ̂1û2

0 + 1
4

ρ̂1

λ̂0
+ ρ̂0û0û1 + 1

4
ρ̂0

λ̂1

)
· · ·
ερ̂N

ω
(
ρ̂N û0 + ρ̂0ûN

)
ω
(

1
2 ρ̂N û2

0 + 1
4

ρ̂N
ˆ + ρ̂0û0ûN + 1

4
ρ̂0
ˆ

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

λ0 λN

6
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F̂ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ŵ2
2ŵ3

3ŵ2 ŵ3
ŵ1

− ŵ3
2

ŵ2
1

ŵ5
2ŵ6(

2ŵ3
2

ŵ3
1

− 3ŵ2 ŵ3
ŵ2

1

)
ŵ4 +

(
3ŵ3
ŵ1

− 3ŵ2
2

ŵ2
1

)
ŵ5 + 3ŵ2

ŵ1
ŵ6

· · ·
ŵ3N+2

2ŵ3N+3(
2ŵ3

2
ŵ3

1
− 3ŵ2 ŵ3

ŵ2
1

)
ŵ3N+1 +

(
3ŵ3
ŵ1

− 3ŵ2
2

ŵ2
1

)
ŵ3N+2 + 3ŵ2

ŵ1
ŵ3N+3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (35)

The flux jacobian takes the form

∂ F̂

∂ ŵ
=

⎛⎜⎜⎜⎝
A 0 0 · · · 0

B1 A 0 · · · 0
B2 0 A · · · 0
· · · · · · · · · · · · · · ·
B N 0 0 · · · A

⎞⎟⎟⎟⎠ , (36)

with the blocks being

A =
⎛⎝ 0 1 0

0 0 2
a b c

⎞⎠ , Bi =
⎛⎝ 0 0 0

0 0 0
di ei f i

⎞⎠ , (37)

and

a = 2ŵ3
2

ŵ3
1

− 3ŵ2 ŵ3

ŵ2
1

, b = 3ŵ3

ŵ1
− 3ŵ2

2

ŵ2
1

, c = 3ŵ2

ŵ1

di =
(

−6ŵ3
2

ŵ4
1

+ 6ŵ2 ŵ3

ŵ3
1

)
ŵ3i+1 +

(
−3ŵ3

ŵ2
1

+ 6ŵ2
2

ŵ3
1

)
ŵ3i+2 − 3ŵ2

ŵ2
1

ŵ3i+3

ei =
(

6ŵ2
2

ŵ3
1

− 3ŵ3

ŵ2
1

)
ŵ3i+1 − 6ŵ2

ŵ2
1

ŵ3i+2 + 3

ŵ1
ŵ3i+3

f i = −3ŵ2

ŵ2
1

ŵ3i+1 + 3

ŵ1
ŵ3i+2.

(38)

We are able to get the corresponding eigenvalues

� =
{

û0, û0 +
√

3

2λ̂0
, û0 −

√
3

2λ̂0

}
, (39)

with the algebraic multiplicity of each entry being N + 1. The eigenvectors are(
03i, ξk,03(K−i)

)
, i = 1, . . . , N, (40)

where 0n denotes the vector consisting of n zeros, and ξ is

ξ1 =
(

2

û2
0

,
2

û0
,1

)
,

ξ2 =
⎛⎜⎝ 8λ̂0

(
√

6 − 2
√

λ̂0û0)2
,

4
√

λ̂0

−√
6 + 2

√
λ̂0û0

,1

⎞⎟⎠ ,

ξ3 =
⎛⎜⎝ 8λ̂0

(
√

6 + 2
√

λ̂0û0)2
,

4
√

λ̂0

√
6 + 2

√
λ̂0û0

,1

⎞⎟⎠ .

(41)
7
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It can be seen that the algebraic multiplicity N + 1 is not equal to the geometric multiplicity N , so the SG hydrodynamic 
system can only be weakly hyperbolic. It should also be mentioned that the above analysis is premised on the basis of 
expansion form of randomness, and is thus applicable to small uncertainties. The proof of hyperbolicity in general cases re-
mains an open problem. By modifying the forms of SG conservation laws, e.g. introducing entropic variables [36] or utilizing 
quasi-linear formulations [37], rigorous hyperbolicity can be enforced. However, to take the advantages of these methods, 
it is necessary to know a strictly convex entropy of the original system beforehand, or to employ quasi-linear equations, 
which is beyond our concern in the current paper. Besides, as shown in Eq. (39), the hyperbolicity is established on the 
non-negative λ̂0 = m/2kT̂0, which may not be true in the gPC approximation due to the Gibbs phenomenon. Therefore, we 
introduce an oscillation mitigation strategy in the following part to enforce the positivity of physical quantities like density 
and temperature.

2.5. Oscillation mitigation

The idea of enforcing the positivity of gPC is to dampen the coefficients in the expansion through filtering. Consider a 
general gPC expansion,

Y N =
N∑
i

ŷi
i, (42)

where Y denotes any variable of interest. The stochastic Galerkin (SG) method commits itself to approximating the exact 
solution Y with least discrepancy. For brevity, we discuss one-dimensional uncertainty first, and the cost function to be 
minimized can be defined as follows,

C( ŷ) := 1

2

∫
Iz

∥∥∥∥∥Y −
N∑

i=0

ŷi
i

∥∥∥∥∥
2

(z)dz, (43)

where ‖ · ‖ denotes the Euclidean norm.
We expect the gPC coefficients can be regularized to guarantee certain key properties, e.g. the hyperbolicity of the SG 

system. Therefore, the filtered gPC expansion solution can be built by introducing a punishment term into Eq. (43),

Cε( ŷ) := 1

2

∫
Iz

∥∥∥∥∥Y −
N∑
i

ŷi
i

∥∥∥∥∥
2

(z)dz + ε

∫
Iz

∥∥∥∥∥L
N∑
i

ŷi
i

∥∥∥∥∥
2

(z)dz, (44)

where the operator L is used to punish the possible oscillations and ε ∈ R+ is the filter strength. A commonly choice for 
dealing with uniform distribution in random space is

Ly(z) =
(
(1 − z2)y′(z)

)′
, (45)

where the Legendre polynomials are eigenfunctions of L. Differentiating Eq. (44) with respect to the L2 norm yields the 
optimal coefficients

ŷi = Fε( ŷ0
i ) = 1

1 + εi2(i + 1)2
ŷ0

i , (46)

where ŷ0
i are the original gPC coefficients without filtering. As can be seen, the filter contributes starting from i = 1, which 

keeps the conservation of expected value. It plays the equivalent role as L2 filter based on splines [26].
A challenge remains to choose an appropriate filter strength ε. The magnitude should be defined not too small so that 

the oscillations can be effectively damped, and not too large so that the solution structure is able to be preserved. In the 
following, we are going to propose a gist to determine the filter strength. Instead of pre-defining the strength beforehand 
by parameter studies or utilizing complicated regressions [38], the current method provides a dynamic adaptation for the 
filter strength based on local flow solutions and rescue the gPC expansions. Specifically, the filter strength is defined as

ε = �tReLU (exp (�y/�y0) − 1) , (47)

where ReLU is the rectified linear unit function and �t is the time step used in the numerical simulation. Besides,

�y = 1

2
(ymax − ymin) (48)

denotes the span of the local gPC solution which is evaluated by the values at quadrature points, and �y0 is the reference 
difference according to stochastic initial conditions. Although we take one-dimensional random space as an example here, 
8
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Fig. 1. Performance of gPC method to approximate discontinuous solution with and without filters.

the extension for evaluating �y to high-dimensional random space is straightforward. The multivariate polynomial chaos 
Y N = ∑N

i ŷi
i can be evaluated at the quadrature points and the span of solution can be computed similarly.
As the stochastic Galerkin method provides the optimal accuracy where the residue of governing equations is orthogonal 

to the linear space spanned by the gPC polynomials [25]. The filter is designed to maintain the accuracy as priority. As 
analyzed [39], filtering of spectral solutions plays an equivalent role to introduce dissipation as limiter and artificial viscosity. 
Therefore, we introduce the filter strength proportional to time step, which is compatible with the nature of numerical 
viscosity. Note that the filtering function (46) can be applied successively. A n-step filtering can be formulated as

ŷi = Fεn−1(Fεn−2(· · · (Fε0( ŷ0
i )))), (49)

until the positivity is ensured at all quadrature points.
In the following, we present a brief numerical experiment to demonstrate the performance of the current filter. A scalar 

solution y in random space z ∈ [−1, 1] is set as

y =
{

2, z < 0
0.125, z ≥ 0,

(50)

and therefore �y0 = 1.875. We then approximate the solution with tenth-order Legendre polynomials. As shown in Fig. 1, 
the Gibbs phenomenon leads undershoots and overshoots around the exact solution. The minimums of oscillated solution 
are thus below zero near the discontinuity or at the end of axis z = 1, which questions the physical consistency of the sys-
tem if y is a non-negative physical quantity. In this case, we employ �t = 1.0 × 10−4 and conduct filtering in a successive 
manner. The amendatory solutions after using single and two consecutive filters from Eq. (49) are plotted in Fig. 1. Appar-
ently, the Gibbs phenomenon is significantly mitigated. The filter in the random space plays a role of injecting dissipation 
and results in a smeared out discontinuity approximation.

3. Solution algorithm

3.1. Update algorithm

The current numerical algorithm is constructed within the finite volume framework. We adopt the notation of cell 
averaged macroscopic conservative variables and particle distribution function in a control volume,

Wtn,xi ,zk = Wn
i,k = 1

�i(x)�k(z)

∫
�i

∫
�k

W(tn,x, z)dxdz,

ftn,xi ,u j ,zk = f n
i, j,k = 1

�i(x)� j(u)�k(z)

∫
�

∫
�

∫
�

f (tn,x,u, z)dxdudz,
i j k

9
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along with their m-th coefficients in the gPC expansions,

Ŵm(tn,xi) = Ŵn
i,m = 1

�i(x)

∫
�i

Ŵm(tn,x)dx,

f̂m(tn,xi,u j) = f̂ n
i, j,m = 1

�i(x)� j(u)

∫
�i

∫
� j

f̂m(tn,x,u)dxdu,

where �i , � j and �k are the cell area in the discretized physical, velocity and random space.
The update of the macroscopic variables and the distribution function at the k-th collocation point can be formulated as

Wn+1
i,k = Wn

i,k + 1

�i

tn+1∫
tn

∑
r

Fr · �Srdt, (51)

f n+1
i, j,k = f n

i, j,k + 1

�i

tn+1∫
tn

∑
r

Fr�Srdt +
tn+1∫
tn

Q ( f i, j,k)dt, (52)

where Fr is the time-dependent flux function of distribution function at cell interface, Fr is the flux of conservative variables, 
and �Sr is the interface area.

For the update of the macroscopic variables and the distribution function, Eq. (51) and (52) can be solved in a coupled 
way. Since there is no stiff source term in the macroscopic conservation laws, Eq. (51) can be solved first, and then the 
updated variables at n + 1 time step can be employed to evaluate the Maxwellian distribution in Eq. (52) implicitly, which 
forms an implicit-explicit (IMEX) strategy.

At the same time, the update of the stochastic Galerkin coefficients for distribution function can be formulated as,

f̂ n+1
i, j,m = f̂ n

i, j,m + 1

�i

tn+1∫
tn

∑
r

F̂r�Srdt +
tn+1∫
tn

Q̂ m( f Ni, j)dt, (53)

where F̂r is the m-th coefficient in the gPC expansion of interface flux function. Taking the moments over velocity space, 
with the compatibility condition given in Eq. (25), the update for the moments of macroscopic conservative variables writes,

Ŵn+1
i,m = Ŵn

i,m + 1

�i

tn+1∫
tn

∑
r

F̂r�Srdt. (54)

The update of Eq. (53) and (54) can be also treated in the IMEX way. However, now the implicit update of the collision 
term in Eq. (17) for the m-th coefficient needs to take the contributions from all other orders into account, which forms a 
linear system for the source term.

3.2. Multi-scale interface flux

Based on the finite volume framework, a scale-adaptive interface flux function is needed in multi-scale modeling and 
simulation. Different from purely upwind flux, here we use an integral solution of the kinetic model equation to construct 
a multi-scale flux function. This integral solution originates from Kogan’s monograph on rarefied gas dynamics [40] and has 
been inherited by a series of gas-kinetic schemes [16–19,41]. If the collision frequency is treated as a local constant, the 
integral solution of the BGK equation (8) along characteristics is,

f (x, t,u, z) = ν

t∫
0

M(x′, t′,u, z)e−ν(t−t′)dt′ + e−νt f (x0,0,u, z), (55)

where x′ = x − u(t − t′) is the particle trajectory, and x0 = x − ut is the location at initial time t = 0. By expanding the 
equilibrium into Taylor series,

M
(
x′, t′,u, z

) =M(x, t,u, z) + ∇xM(x, t,u, z) · (x′ − x
)

+ ∂tM(x, t,u, z)
(
t′ − t

)+ O
(
�x2,�t2

)
,

(56)
10
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we can rewrite Eq. (55) as

f (x, t,u, z) = (
1 − e−νt)M+(x, t,u) + e−νt f

(
x0,0,u, z

)
, (57)

where

M+ = M+
(

te−νt

1 − e−νt
− 1

ν

)
(∂tM+ u · ∇xM) . (58)

The above solution indicates a self-conditioned mechanism for multi-scale gas dynamics. For example, when the evolving 
time t is much less than the mean collision time τ = 1/ν , the dominant latter term in Eq. (55) describes the free transport 
of particles. And if t is much larger than τ , the second term approaches to zero, and then the distribution function will be 
an accumulation of Maxwellian along the characteristic lines, which provides the underlying wave-interaction physics for the 
hydrodynamic solutions. Based on the competition between particle transport and wave interaction, there is a continuous 
transition from rarefied gas dynamics to hydrodynamics.

As can be seen, the collision frequency ν doesn’t play a role in determining interface dynamics directly, but only regulates 
the ratio between equilibrium and initial distributions. Therefore, similar as the case in physical space, here we make 
additional approximation that for the loss term the collision frequency ν at the cell interface can be regarded as a local 
constant in phase space (x, u, z) within each time step. In random space, ν is approximated by its expected value, ν �
E(νN ) = ν̂0. This allows us to rewrite the evolving solution in Eq. (55) with the stochastic Galerkin formulation. In the 
following, we present a detailed strategy for the construction of the numerical flux. For brevity, we use one-dimensional 
physical, velocity and random spaces to illustrate the principle of the solution algorithm, while its extension to multi-
dimensional cases is straight-forward. For each time step, the evolving solution at cell interface xi+1/2 = 0 from initial time 
tn = 0 can be rewritten into the following form,

f̂m(0, t, u j) = ν̂0

t∫
0

m̂m(x′, t′, u j)e−ν̂0(t−t′)dt′ + e−ν̂0t f̂m(−u jt,0, u j), (59)

where f̂m(−u jt, 0, u j) is the initial distribution at each time step.
In the numerical scheme, the initial distribution function around the cell interface can be obtained through reconstruc-

tion, e.g.

f̂m(x,0, u j) =
{

f̂ L
i+1/2, j,m, x ≤ 0,

f̂ R
i+1/2, j,m, x > 0,

(60)

with first-order accuracy and

f̂m(x,0, u j) =
{

f̂ L
i+1/2, j,m + σ̂i, j,mx, x ≤ 0,

f̂ R
i+1/2, j,m + σ̂i+1, j,mx, x > 0,

(61)

with second-order accuracy. Here { f̂ L
i+1/2, j,m , f̂ R

i+1/2, j,m} are the reconstructed initial distribution functions at the left and 
right hand sides of a cell interface, and σ̂ is the corresponding slope along x direction.

In the following, we use the superscript 0 for the interface at {x = 0, t = 0}. However, all formulas generalize to arbi-
trary interfaces. The macroscopic conservative variables in the gPC expansions at the initial interface {x = 0, t = 0} can be 
evaluated by taking moments over velocity space,

W0
N =

N∑
m=0

ŵ0
m
m, ŵ0

m =
∑
u j>0

f̂ L
i+1/2, j,mψ�u j +

∑
u j<0

f̂ R
i+1/2, j,mψ�u j.

The collision frequency ν , which we approximated by its expected value, at the interface may be predetermined or can be 
evaluated from macroscopic variables,

ν0 ∼ ν̂0
0 = p̂0

0

μ̂0
0

, (62)

where p̂0
0 is the pressure, and μ0

0 is the viscosity with respect to a specific molecule at the cell interface.
The equilibrium distribution at {x = 0, t = 0} can be determined as illustrated in Sec. 2.3, and the m-th coefficient of 

equilibrium distribution around a cell interface can be constructed as

m̂m(x, t) = m̂0
m, (63)
11
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with first-order accuracy and

m̂m(x, t) = m̂0
m (1 + ax + At) , (64)

up to second order. The coefficients {a, A} are the spatial and temporal derivatives of the equilibrium distribution, which 
can be expanded into series with respect to collision invariants ψ ,

a = a1 + a2u + a3
1

2
u2 = aiψi,

A = A1 + A2u + A3
1

2
u2 = Aiψi .

The spatial derivatives a are related to the slopes of the conservative variables around the cell interface,(
∂ ŵm

∂x

)
� ŵi+1 − ŵi

�x
=

∫
am̂0

mψdu = M0
αβaβ,

where M0
αβ = ∫

m̂0
mψαψβdu is a known matrix and a = (a1, a2, a3)

T . Here �x = xi+1 − xi is the distance between two cell 
centers. The time derivative A is related to the temporal variation of conservative flow variables,

∂ ŵm

∂t
=

∫
Am̂0

mψdu,

and it can be calculated via the time derivative of the compatibility condition

d

dt

∫
(m̂m − f̂m)ψdu |x=0,t=0= 0.

With the help of the Euler equations, it gives

−
∫

u
∂m̂m

∂x
ψdu = ∂ ŵm

∂t
=

∫
Am̂0

mψdu,

and the spatial derivatives in the above equation have been obtained from the initial equilibrium reconstruction in Eq. (64). 
Therefore, we have∫

Am̂0
mψdu = −

∫
aum̂0

mψdu,

from which A = (A1, A2, A3)
T is fully determined.

After all coefficients are obtained, the time-dependent interface distribution function becomes

f̂m(0, t, u j) =
(

1 − e−ν̂0t
)

m̂0
j,m

+
[
(−1 + e−ν̂0t)/ν̂0 + te−ν̂0t

]
uam̂0

j,m

+
[(

ν̂0t − 1 + e−ν̂0t
)

/ν̂0

]
Am̂0

j,m

+ e−ν̂0t
[(

f̂ L
i+1/2, j,m − u jtσ̂i, j,m

)
H
[
u j

]
+
(

f̂ R
i+1/2, j,m − u jtσ̂i+1, j,m

)
(1 − H

[
u j

]
)
]

=m̃i+1/2, j,m + f̃ i+1/2, j,m,

(65)

where H(u) is the heaviside step function. The notation m̃i+1/2, j,m denotes the contribution of equilibrium state integration 
and f̃ i+1/2, j,m is related to the initial distribution. If we consider first-order interface flux in space and time, then it reduces 
to

f̂m(0, t, u j) =
(

1 − e−ν̂0t
)

m̂0
j,m

+ e−ν̂0t
[

f̂ L
i+1/2, j,m H

[
u j

]+ f̂ R
i+1/2, j,m(1 − H

[
u j

]
)
]
.

(66)

With the variation of the ratio between evolving time t (i.e., the time step in the computation) and collision time 
τ = 1/ν̂0, the above interface distribution function provides a self-conditioned multiple scale solution across different flow 
12
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Fig. 2. Expectations and standard deviations of density, momentum and energy fluxes inside shock tube with stochastic relaxation frequency at t = 0.5 (first 
column: Knref = 0.0001, second column: Knref = 0.01, third column: Knref = 1.0).

regimes. After the coefficients of distribution function at all orders are determined, the corresponding gPC expansion can be 
expressed as,

f N(0, t, u) =
N∑

m=0

f̂m(0, t, u)
m, (67)

and the corresponding fluxes of particle distribution function and conservative flow variables can be evaluated via

F N = u f N(0, t, u, ξ),

FN =
∫

u f N(0, t, u, ξ)ψdu �
∑

w ju j f N(0, t, u j, ξ)ψ j,
(68)

where u j denotes a discretized point in particle velocity space, and w j is its integral weight in velocity space.
In the rest part of this subsection, we present a numerical experiment to show the performance of current flux solver, 

with special attention on the influence of the adopted constant collision frequency ν �E(νN ) = ν̂0. The standard Sod shock 
tube problem is used as benchmark to compare the current flux, pure upwind flux and the stochastic collocation unified 
gas-kinetic flux with no approximation of ν . We consider the initial flow field

ρL = 1, U L = 0, pL = 1, x ≤ 0.5,

ρR = 0.125, U R = 0, pR = 0.1, x > 0.5,

where the collision frequency is set as ν = (1 + 0.2z)/Knref and z ∈ U [−1, 1]. The computational parameters are {nx =
200, nu = 72, nz = 13} and the gPC expansion order is N = 7. Fig. 2 and 3 present the expectations and standard devia-
tions of the numerical fluxes for conservative variables from three different solvers at different time instants and reference 
Knudsen numbers. As shown, despite the approximation of collision frequency ν , the current flux solver provides equivalent 
solutions across the contact discontinuity and shock wave at different evolving time and Knudsen numbers. Around the rar-
efaction wave, slight deviations are observed between the current and reference solutions, yet it produces far more accurate 
results compared with the pure upwind settings.

3.3. Collision term

Besides the construction of the interface flux, the collision term needs to be evaluated inside each control volume for the 
update of the particle distribution function within a time step. In the current numerical scheme, to overcome the stiffness 
of the kinetic equation in the continuum limit, the implicit-explicit (IMEX) technique is used to solve the collision operator. 
13
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Fig. 3. Expectations and standard deviations of density, momentum and energy fluxes inside shock tube with stochastic relaxation frequency at t = 1.0 (first 
column: Knref = 0.0001, second column: Knref = 0.01, third column: Knref = 1.0).

For simplicity, here we only discuss a fully implicit treatment of collision term, while the trapezoidal and other high-order 
integration techniques can be implemented similarly. The solution algorithm can be implemented in the following two 
ways.

1. Stochastic Galerkin method
Let us consider the stochastic Galerkin system given by Eq. (54) and (53). In the one-dimensional case, the update 

algorithm for the m-th coefficient of gPC expansion inside cell {xi, u j} reduces to

Ŵn+1
i,m = Ŵn

i,m + 1

�xi
(F̂i−1/2,m − F̂i−1/2,m), (69)

f̂ n+1
i, j,m = f̂ n

i, j,m + 1

�xi
( F̂ i−1/2, j,m − F̂ i+1/2, j,m) + �t Q̂ n+1

m ( f Ni, j), (70)

where F̂i±1/2,m = ∫ tn+1

tn u f̂ i±1/2,mψdudξdt and F̂ i±1/2, j,m = ∫ tn+1

tn u j f̂ i±1/2, j,mdt are the time-integral interface fluxes for the 
macroscopic and mesoscopic gPC expansion coefficients. The source term for the distribution function at tn+1 time step is,

Q̂ m( f n+1
N ) =

∑N
p

∑N
q ν̂n+1

p m̂n+1
q 〈
p
q
m〉 −∑N

p

∑N
q ν̂n+1

p f̂ n+1
q 〈
p
q
m〉

〈
2
q〉 . (71)

In the numerical simulation, the macroscopic system (69) is solved first. The updated quantities can be used to determine 
the Maxwellian distribution as described in Sec. 2.3. Due to the possible existence of negative density or temperature, after 
each update we first evaluate the gPC expansions on the quadrature points inside random space. If minimum of density or 
temperature is below zero, then we filter the gPC expansions of macroscopic variables Wn+1

N as described in Sec. 2.5. Since 
the calculation of Maxwellian relies on quadrature points, the conditional step won’t bring any computing overhead, and 
the filtering cost is of O (N). The collision frequency νn+1

N can be predetermined or evaluated from macroscopic variables 
via

νn+1
N =

N∑
p=0

ν̂n+1
p 
p, ν̂n+1

p = 〈pn+1
N /μn+1

N ,
p〉
〈
2

p〉 , (72)

where {pN , μN} are pressure and viscosity in the gPC expansions. Here we use the full gPC expansion for ν to discretize 
the collision term.
14
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Notice also that Eq. (70) and (71) form a linear system,

f̂ n+1
i, j,m +

∑N
p

∑N
q ν̂n+1

p f̂ n+1
q 〈
p
q
m〉

〈
2
q〉 �t

= f̂ n
i, j,m + 1

�xi
( F̂ i−1/2, j,m − F̂ i+1/2, j,m) +

∑N
p

∑N
q ν̂n+1

p m̂n+1
q 〈
p
q
m〉

〈
2
q〉 �t,

(73)

which can be expressed as

Afn+1 = B, (74)

where A is the coefficient matrix of solution vector f = ( f̂ n+1
1 , f̂ n+1

2 , · · · , f̂ n+1
md )T , and B is the right-hand side of Eq. (73).

2. Hybrid Galerkin-Collocation method
It is clear that the linear system in Eq. (73) will bring considerable computational cost as the gPC order increases. To 

overcome this, we take advantage of the original kinetic equation (52) with quadrature points zk in random space. In the 
one-dimensional case, this reduces to

f n+1
i, j,k = f n

i, j,k + 1

�xi
(Fi−1/2, j,k − Fi+1/2, j,k) + �t Q ( f n+1

i, j,k ), (75)

where Fi±1/2, j,k = ∫ tn+1

tn u j f i±1/2, j,kdt is the time-integral interface flux for distribution function. To make use of it, in the 
numerical algorithm, we first update the gPC coefficients of macroscopic variables to tn+1 time step,

Ŵn+1
i,m = Ŵn

i,m + 1

�xi
(F̂i−1/2,m − F̂i−1/2,m). (76)

Similar as the stochastic Galerkin method, a conditional operation is incorporated here. If the Gibbs phenomenon brings 
negative density of temperature, then we utilize the filter to ensure the positivity. The particle distribution function is 
updated to an intermediate step t∗ ,

f̂ ∗
i, j,m = f̂ n

i, j,m + 1

�xi
( F̂ i−1/2, j,m − F̂ i+1/2, j,m), (77)

which is then evaluated on the quadrature points zk ,

f ∗
i, j,k = f ∗

Ni, j(zk) =
N∑
m

f̂ ∗
i, j,m(zk)
m(zk). (78)

Afterwards, the collision term is treated via

f n+1
i, j,k = f ∗

i, j,k + �tνn+1
i, j,k(M

n+1
i, j,k − f n+1

i, j,k )

=( f ∗
i, j,k + �tνn+1

i, j,kM
n+1
i, j,k)/(1 + �tνn+1

i, j,k),
(79)

where the Maxwellian distribution function at time step tn+1 can be evaluated in the same way as described in Sec. 2.3. 
The updated distribution function can be reabsorbed into the gPC expansion,

f̂ n+1
i, j,m = 〈 f n+1

i, j ,
m〉
〈
2

m〉 =
∑

k f n+1
i, j (zk)
m(zk)p(zk)∫

Iz
(
m(z))2 p(z)dz

, (80)

and the final solution in gPC expansion at tn+1 is,

f n+1
Ni, j =

N∑
m=0

f̂ n+1
i, j,m
m. (81)

So far, we have illustrated the principle for two update algorithms. In the Sec. 4, we will compare these two methods based 
on numerical experiments.

3.4. Time step

In the current scheme, the time step is determined by the Courant-Friedrichs-Lewy condition in phase space,

�t = C
�xmin

umax + Umax
, (82)

where C is the CFL number, �xmin = min(|�xi |) is the finest mesh size, umax = max(|u j|) is the largest discrete particle 
velocity, and Umax = max(û1, ̂u2, · · · , ̂uN) is the largest stochastic coefficient in the gPC expansions of fluid velocity.
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3.5. AP property of the numerical scheme

In this part, a brief numerical analysis will be presented on the asymptotic property of the current scheme. For simplicity, 
the one-dimensional case is used for illustration, and the collision frequency ν is assumed to be a local constant. The 
solution algorithm for the stochastic collocation method given in Eq. (75) is equivalent to

f̂ n+1
i, j,m = f̂ n

i, j,m + 1

�x

tn+1∫
tn

u j( f̂ i−1/2, j,m − f̂ i+1/2, j,m)dt + ν�t(m̂n+1
i, j,m − f̂ n+1

i, j,m). (83)

Now let us consider limiting cases of numerical flow dynamics. In the collisionless limit where ν approaches zero, the 
relation ν�t � 1 holds naturally, and the fully discretized interface distribution in Eq. (65) becomes

f̂m(xi+1/2, t, u j) =
(

f̂ L
i+1/2, j,m − u jtσ̂i, j,m

)
H
[
u j

]+
(

f̂ R
i+1/2, j,m − u jtσ̂i+1, j,m

)
(1 − H

[
u j

]
), (84)

and Eq. (83) reduces to

f̂ n+1
i, j,m = f̂ n

i, j,m + 1

�x

[(
�t f̂ L

i−1/2, j,m − 1

2
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)
H
[
u j

]
+
(

�t f̂ R
i−1/2, j,m − 1

2
�t2u jσ̂i, j,m

)(
1 − H

[
u j

])
−

(
�t f̂ L

i+1/2, j,m − 1

2
�t2u jσ̂i, j,m

)
H
[
u j

]
−
(

�t f̂ R
i+1/2, j,m − 1

2
�t2u jσ̂i+1, j,m

)(
1 − H

[
u j

])]
,

(85)

which is a second-order upwind scheme for free molecular flow.
On the other hand, in the Euler regime with ν → ∞, the particle distribution is close to equilibrium state. In this case 

we rewrite the solution algorithm in Eq. (83) and take the limit, which results

lim
ν→∞ f̂ n+1

i, j,m = lim
ν→∞

⎛⎝m̂n+1
i, j,m − f̂ n+1

i, j,m − f̂ n
i, j,m

ν�t
−

∫ tn+1

tn u j( f̂ i−1/2, j,m − f̂ i+1/2, j,m)dt

ν�t�x

⎞⎠
= m̂n+1

i, j,m.

(86)

If we consider a fully resolved case where there exist continuous distributions of flow variables and their derivatives over 
the domain, then the reconstruction technique used in Sec. 3.2 is equivalent to central interpolation, and the interface 
solution in Eq. (65) becomes

f̂m(xi+1/2, t, u j) = (
1 − e−νt)m̂n

i+1/2, j,m

+ [
(−1 + e−νt)/ν + te−νt]u jamm̂n

i+1/2, j,m

+ [(
νt − 1 + e−νt)/ν

]
Amm̂n

i+1/2, j,m

+ e−νt
(

f̂ n
i+1/2, j,m − u jtσ̂

n
i+1/2, j,m

)
.

(87)

The initial distribution function can be obtained via

f̂ n
i+1/2, j,m = f̂ n

i, j,m + f n
i+1, j,m − f n

i, j,m

�x

1

2
�x

= m̂n
i+1/2, j,m + O

(
�x2

)
.

(88)

We substitute the above initial distribution into Eq. (87), and we get

f̂m(xi+1/2, t, u j) =(1 + t Am)m̂n
i+1/2, j,m

+ [
(−1 + e−νt)/ν + te−νt]u jamm̂n

i+1/2, j,m

+ [(−1 + e−νt)/ν
]

Amm̂n
i+1/2, j,m − u jtσ̂

n
i+1/2, j,me−νt

=m̂m(xi+1/2, t, u j) + O
(
�t2,�x2

) (89)
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Fig. 4. Flowchart of solution algorithm.

as ν → ∞. The interface flux for the macroscopic variables can be obtained by taking conservative moments ψ to Eq. (89), 
which results in

F̂w =
⎛⎝ F̂ρ

F̂m

F̂e

⎞⎠ =
⎛⎜⎝

∑
w ju j f̂ i+1/2, j,m∑
w ju2

j f̂ i+1/2, j,m∑
w j

1
2 u3

j f̂ i+1/2, j,m

⎞⎟⎠+ O
(
�t2,�x2

)
, (90)

where u j is the discretized point in particle velocity space, and w j is its quadrature weight. Thus, the Euler equations can 
be obtained up to errors of order O (�t2, �x2), i.e.,

∂

∂t

⎛⎝ ρ̂m

( ˆρU )m

(ρ̂E)m

⎞⎠+ ∂

∂x

⎛⎝ F̂ρ

F̂m

F̂e

⎞⎠ = O
(
�t2,�x2

)
(91)

The above numerical analysis demonstrates that our current scheme, including the stochastic collocation formulation, is 
formally asymptotic-preserving (AP).

3.6. Summary of the algorithm

The solution algorithm of our stochastic kinetic scheme can be summarized as follows: It updates both conservative 
variables and distribution function in Eq. (51) and Eq. (52). The scale-dependent flux function is determined by the particle 
distribution function at the interface, which comes from the integral solutions of kinetic model equation and is given in 
Eq. (66) and Eq. (65). As shown in the theoretical analysis, the asymptotic-preserving property is preserved by the numerical 
algorithm. The flowchart of the current solution algorithm is summarized in Fig. 4.

4. Numerical experiments

In this section, we will present some numerical results. The goal of numerical experiments is not simply to validate the 
performance of the current scheme, but also to present and analyze new physical observations. In order to demonstrate 
the multi-scale nature of the algorithm, simulations from Euler and Navier-Stokes to free molecule flow are presented. The 
following dimensionless flow variables are used in the calculations,

x̃ = x

L0
, ỹ = y

L0
, ρ̃ = ρ

ρ0
, T̃ = T

T0
, ũ = u

(2RT0)1/2
,

Ũ = U

(2RT0)1/2
, f̃ = f

ρ0(2RT0)3/2
, P̃ = P

ρ0(2RT0)
, q̃ = q

ρ0(2RT0)3/2
,

where R is the gas constant, u is the particle velocity, U is the macroscopic fluid velocity, P is the stress tensor, q is the 
heat flux. The subscript zero represents the reference state. For brevity, the tilde notation for dimensionless variables will 
be removed henceforth. In all simulations we consider one-dimensional monatomic gas, for which the corresponding gas 
constant is

γ = (I + 3)/(I + 1) = 3,

with I = 0 denoting the nonexistence of other molecular internal degrees of freedom, and the Maxwellian distribution 
function is

M = ρ

(
λ
) 1

2

e−λ(u−U )2
.

π
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Fig. 5. Expectation value, its time derivatives, and standard deviation of particle distribution within t, u ∈ [0, 10] × [−6, 6] in the homogeneous relaxation 
problem. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

4.1. Homogeneous relaxation

First let us consider a homogeneous relaxation problem. The corresponding BGK equation is

∂ f

∂t
= ν(M− f ), (92)

and the initial condition of the particle distribution is

f0 = u2e−u2
.

The initial macroscopic variables are deterministic and fixed in time,

W =
⎛⎝ ρ0

ρ0U0
ρ0 E0

⎞⎠ =
∫

f0ψdu, M = ρ0

(
λ0

π

) 1
2

e−λ0(u−U0)2
.

In this case, the randomness originates from the collision kernel, which follows a normal distribution ν ∼ (ϕ, σ 2) where 
{ϕ = 1, σ = 0.2}.

An integral solution of Eq. (92) can be constructed as,

f = f0e−νt + (1 − e−νt)M0, (93)

which forms a combined log-normal distribution over random space. Therefore, its mean and variance values can be derived 
theoretically, i.e.,
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Fig. 6. Expectation value and standard deviation of particle distribution over velocity space at different output time in the homogeneous relaxation problem.

Fig. 7. Expectation values and standard deviations of macroscopic variables in the homogeneous relaxation problem.

E( f ) = f0 exp(−ϕt + (σ t)2/2) +M(1 − exp(−ϕt + (σ t)2/2)),

S( f ) =
[
( f0 −M)2(exp(σ 2t2) − 1)exp(−2ϕt + σ 2t2)

]1/2
.

(94)

We employ the stochastic Galerkin (SG) method given in Sec. 3.3 with 4th-order Runge-Kutta method to conduct the nu-
merical simulation. The simulation is conducted within the time interval t ∈ [0, 10], with the time step fixed as �t = 0.01
here. The particle velocity space is truncated as [−6, 6] with 200 uniform meshes, and the gPC expansion is employed up 
to 9th order.

Fig. 5 presents the evolution of expectation and standard deviation of the particle distribution function over the entire 
phase space {t × u}, and Fig. 6 picks up some curves over velocity space at typical output time. As time goes, the initial 
bimodal particle distribution gradually approaches Maxwellian due to intermolecular collisions. The maximum of standard 
deviation emerges around t = 1, which corresponds well to the formula in Eq. (94). From a physical point of view, the 
random collision kernel results in more uncertainties where the distribution function is being reshaped by intermolecular 
interactions significantly. When t > 8, with the distribution function being in a dynamical balance of a Maxwellian which is 
fully deterministic, the collision term has no explicit effects and the standard deviation approaches zero. Fig. 5(b) and 5(c)
show the clear correlation between standard deviation and time derivative of expected value.

Fig. 7 presents the time evolution of macroscopic density and total energy. Since there is no contribution of inhomoge-
neous transport, the total density and energy expectations are conserved. The pattern of standard deviation here coincides 
with that of particle distribution function, with a local maximum emerging around t = 1. Since the formulas given in 
Eq. (94) are always symmetric in velocity space, the macroscopic fluid velocity always equals to zero, and the random 
collision kernel only affects the evolution of density and energy under the current initial condition.
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Fig. 8. Errors of expectation value and standard deviation of particle distribution function over the entire phase space t, u ∈ [0, 10] × [−6, 6] in the homo-
geneous relaxation problem.

Fig. 9. Expectations of density, velocity and temperature around normal shock wave with stochastic collision frequency (“Galerkin” denotes SG method and 
“Collocation” denotes hybrid SG-SC method).

To validate the current numerical scheme, Fig. 8 presents its convergence to theoretical solutions with respect to different 
gPC expansion orders. The standard collocation results are provided for comparison. The number of quadrature points in 
random space is set as 2N + 1, with N being the order of gPC expansion. From the results, the spectral convergence of 
stochastic Galerkin method is clearly identified.
20



T. Xiao and M. Frank Journal of Computational Physics 437 (2021) 110337
Fig. 10. Standard deviations of density, velocity and temperature around normal shock wave with stochastic collision frequency (“Galerkin” denotes SG 
method and “Collocation” denotes hybrid SG-SC method).

4.2. Normal shock structure

From now on we turn to spatially inhomogeneous problems. The first problem is the normal shock wave [42]. Based 
on the reference frame of shock, the upstream and downstream gases are related with the well-known Rankine-Hugoniot 
relation,

ρ+
ρ−

= (γ + 1)Ma2

(γ − 1)Ma2 + 2
,

U+
U−

= (γ − 1)Ma2 + 2

(γ + 1)Ma2 ,

T+
T−

= ((γ − 1)Ma2 + 2)(2γ Ma2 − γ + 1)

(γ + 1)2Ma2
,

where γ is the ratio of specific heat. The upstream macroscopic density, velocity and temperature are denoted with 
{ρ−, U−, T−}, and the downstream with {ρ+, U+, T+}. The upstream flow quantities are chosen as references for nondi-
mensionalization, and the upstream Mach number is defined as

Ma = U−
(γ /2λ−)1/2

.

Note that now the speed of sound c = (γ /2λ−)1/2 is larger than the most probable speed of molecule (1/λ−)1/2.
21



T. Xiao and M. Frank Journal of Computational Physics 437 (2021) 110337
Fig. 11. Expectations of density, velocity and temperature around normal shock wave with stochastic Mach number (“Galerkin” denotes SG method and 
“Collocation” denotes hybrid SG-SC method).

Table 1
The computational time costs in seconds of different numerical methods in normal shock 
structure problem.

Galerkin Hybrid Galerkin-Collocation Monte Carlo

Ma = 2 5500 488 62575
Ma = 3 13344 1180 140430

In the computation, the physical domain is set as x ∈ [−35, 35] with 100 uniform cells. The truncated particle velocity 
space is u ∈ [−12, 12], which is discretized by 72 uniform quadrature points. The CFL number adopted is 0.95. We con-
sider two types of randomness, i.e. the random collision kernel and random upstream Mach number. Both the stochastic 
Galerkin and hybrid Galerkin-collocation methods in Sec. 3.3 are used in the simulation, with 5th order gPC expansion 
and 9 Gaussian quadrature points employed. The Monte-Carlo simulation with 10000 samplings is also conducted for refer-
ence.

4.2.1. Stochastic collision kernel
In the first case, we consider a stochastic collision frequency,

ν = 1 + 0.05z,

where z is a standard random variable with normal distribution z ∼ (0, 1). Fig. 9 and 10 present the numerical solutions 
from the three methods at different upstream Mach numbers Ma = 2 and 3, and Table 1 records their computational time 
costs. As shown, even with a moderate number of samples, the Monte-Carlo method is much more time consuming than 
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Fig. 12. Standard deviations of density, velocity and temperature around normal shock wave with stochastic Mach number (“Galerkin” denotes SG method 
and “Collocation” denotes hybrid SG-SC method).

the intrusive stochastic methods. Due to the nonlinearity held in the collision operator of kinetic equation, the proposed 
hybrid method is more than ten times faster than the standard SG method, but maintains comparative accuracy. At Ma = 3
the expected shock profile becomes wider than that of Ma = 2 due to the increasing momentum and energy transfers. From 
Fig. 10, it is clear that the shock wave serves as a main source for uncertainties where significant intermolecular interactions 
happen. Consistent with the behavior of expected flow quantities, the uncertainties at Ma = 3 are more significant and 
widely distributed than that of Ma = 2. Besides, it is noticeable that the uncertainties of all flow variables present a bimodal 
pattern inside the shock profile. Given the initial Rankine-Hugoniot relation, the flow conditions at the center of shock x = 0
are basically fixed, while the Mach number and collision kernel affect the shape and span of the shock profile. As shown 
in Fig. 10, the upstream half of the shock wave seems to be more sensitive to the random collision kernel, resulting in a 
steeper distribution of uncertainties. After that, it approaches zero at the location of initial discontinuity and then arises 
again with a wider and moderate distribution at the downstream half. Of all the three macroscopic flow variables, the 
density profile contains considerable magnitude of uncertainty in the downstream part, while the temperature randomness 
is nearly located in the upstream half.

4.2.2. Stochastic Mach number
In the second case, we consider the stochastic Mach number, which follows

Ma = Ma0(1 + 0.2z),

where Ma0 = 3 and z follows uniform distribution in [−1, 1]. The collision frequency is determined by ν = p
μ where p is 

pressure. The viscosity μ is evaluated with the variable hard-sphere (VHS) model,

μ = μref

(
T

T

)η

,

ref
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Fig. 13. Evaluations of gPC profiles of density, velocity and temperature at different random-space points with stochastic Mach number.

where μref = 0.554 and η = 0.81. Fig. 11 and 12 present the numerical solutions under current settings. The results from 
SG, hybrid SG-SC and Monte Carlo samplings correspond well. With the randomness coming from upstream flow velocity, 
the profiles of density, velocity and temperature now present similar patterns in both expectations and standard deviations. 
As we move downwards, the stochasticity of density and temperature gradually forms, with the temperature being far more 
sensitive to the variation of Mach number. Across the shock, the discrepancy of velocity reduces correspondingly. Fig. 13
shows the realizations of macroscopic profiles in gPC expansions at discrete points of random space, from which we clearly 
see the evolution of stochastic solutions.

4.3. Multi-scale shock tube

The next case is multi-scale Sod problem. The initial gas in a one-dimensional tube x ∈ [0, 1] is divided into left 
{ρL, U L, pL} and right status {ρR , U R , pR}. We employ the variable hard-sphere (VHS) gas here, with its viscosity coeffi-
cient defined as,

μ = μref

(
T

Tref

)η

,

and the reference state is related with Knudsen number,

μref = 5(α + 1)(α + 2)
√

π

4α(5 − 2ω)(7 − 2ω)
Knref ,

where the parameters {α, ω, η} take the value {1, 0.5, 0.72}. The collision frequency is determined by

ν = p
,

μ
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Fig. 14. Expectations of density, velocity and temperature inside shock tube with stochastic initial density at different Knudsen numbers.

where p is the pressure.
In the simulation, the physical domain is divided into 150 uniform cells, and the particle velocity space u ∈ [−5, 5] is 

discretized into 72 uniform quadrature points to update the distribution function. To test multi-scale performance of the 
current scheme, simulations are performed with different reference Knudsen numbers Knref = 1.0 × 10−4, 1.0 × 10−2, and 
1.0, with respect to typical continuum, transition, and free molecular flow regimes. We consider two types of random inputs, 
i.e. the random initial flow field and location of discontinuity.

4.3.1. Stochastic flow field
In the first case, the uncertainties are involved from random initial condition. The flow field at t = 0 is set as

ρL, U L = 0, pL = 1.0, x ≤ 0.5,

ρR = 0.125, U R = 0, pR = 0.1, x > 0.5,

where two types of distribution are considered for the left-hand-side density, i.e. the normal and the uniform distributions 
in random space,

(1)ρL ∼ N [ϕ,σ 2], ϕ = 1.0, σ = 0.0289,

(2)ρL ∼ U[a,b], a = 0.95, b = 1.05.

The parameters {μ, σ , a, b} are chosen in the way of keeping the same expectation and variance of initial density based on 
the probability theory. The particle distribution functions are set as Maxwellian everywhere in correspondence to local flow 
variables. The hybrid stochastic Galerkin-collocation method is employed with 6th-order gPC expansion and 13 quadrature 
points, while the reference solutions are conducted by the standard collocation method with 800 uniform cells.
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Fig. 15. Standard deviations of density, velocity and temperature inside shock tube with stochastic initial density at different Knudsen numbers.

The numerical expectation solutions of macroscopic variables at t = 0.12 are shown in Fig. 14 and 15. In the continuum 
regime with Knref = 1.0 × 10−4, the molecular relaxation time is much smaller than the time step. As a result, the current 
scheme becomes a shock-capturing method due to limited resolution in space and time, and thus produces Euler solutions 
of wave interactions in the Riemann problem. With increasing Knudsen number and molecular mean free path, the particle 
free transports and collisions become loosely coupled, and the flow physics changes significantly with enhanced transport 
phenomena. From Knref = 1.0 × 10−4 to Knref = 1.0, a smooth transition is recovered from the Euler to collisionless Boltz-
mann solutions.

Fig. 15 presents the standard deviations at the same output instant. Generally speaking, the uncertainties travel along 
with the flow structures and present similar propagating patterns as expectation values. At Knref = 1.0 × 10−4, structures 
such as rarefaction wave, contact discontinuity and shock are also observed in the profiles of standard deviation. Given the 
uncertainty from initial gas density in the left tube, it can be seen that the wave structures serves as other sources where 
the local maximums of variance emerge. Compared with the expectation value, the variance is more sensitive to physical 
discontinuities and holds finer-scale structures. As a result, the overshoots near contact discontinuity and shock cannot be 
well resolved by the shock-capturing scheme due to the limited resolution and there exist deviations between numerical and 
reference solutions, but it is clear that all the key structures are preserved. With increasing Knudsen numbers, the profiles 
of standard deviations get much smoother along with the wave-propagation structures inside the tube. At Knref = 1.0, 
the density and velocity variance profiles show similar transition layers as their expectation values between upstream and 
downstream flow conditions.

In Fig. 16 we present the evaluation of gPC expansions of macroscopic flow variables over the phase space {x × z}, where 
the expectation and standard deviation can be determined by integrating the contour value along the z-axis along with 
probability density. From the contours, we clearly see that the horizontal gradients determine the variances of flow vari-
ables. With increasing Knudsen numbers, although the initial density keeps the same, the dominant physical mechanism 
turns from wave interaction to particle transport. The enhanced transport phenomena lead significant dissipation along the 
random z-axis. Therefore, the magnitude of standard deviations reduces correspondingly. Moreover, with the correspon-
dence between macroscopic and mesoscopic formulations, the stochastic kinetic scheme also provides us the chance to 
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Fig. 16. Evaluations of gPC expansions of macroscopic flow variables over random space inside shock tube with stochastic initial density at Knref = 0.001
(first row), Knref = 0.01 (second row) and Knref = 0.1 (third row).

quantify the uncertainties in the evolution process of particle distribution function. Fig. 17 presents the expectations and 
standard deviations of particle distribution function at different reference Knudsen numbers. As is shown, the overshoots in 
macroscopic standard deviations at Knref = 1.0 × 10−4 come from the uncertainties contained in the particle distribution 
function near the center of velocity space. From continuum to rarefied regimes, the randomness on particles get reduced 
and smoothed, resulting in gentle profiles of macroscopic quantities.

4.3.2. Stochastic discontinuity location
In the second case, we consider the uncertainty in the location of initial discontinuity. The flow field at t = 0 is set as

ρL = 1, U L = 0, pL = 1, x ≤ 0.5 + 0.05z,

ρR = 0.125, U R = 0, pR = 0.1, x > 0.5 + 0.05z,

where z ∼ U [−1, 1] follows uniform distribution in random space. The particle distribution functions are set as Maxwellian 
everywhere in correspondence to local flow variables. The hybrid SG-SC method is employed with 11th-order gPC ex-
pansion and 23 quadrature points, while the reference solutions are conducted by the standard collocation method with 
800 uniform cells. It is a challenging task where the initial condition is discontinuous in random space, and the Gibbs 
phenomenon emerges in the SG methods. As discussed [36], the negative density or temperature involved by the gPC 
expansions may lead to the failure at the first iterative step. In response to this issue, a filtering loop as formulated 
in Eq. (49) is applied after the update at each time step until the positivity of local density and temperature is en-
sured.
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Fig. 17. Expectation values and standard deviations of particle distribution function over velocity space inside shock tube with stochastic initial density at 
Knref = 0.001 (first row), Knref = 0.01 (second row) and Knref = 0.1 (third row).

The numerical expectation solutions of macroscopic variables at t = 0.12 are shown in Fig. 18 and 19. Due to the 
flexibility of initial location, the wave structures inside the shock tube become wider and less steep. Therefore, the expected 
solutions at a certain Knudsen number seem to be more like rarefied profiles with higher Knudsen number in the first 
case. From Knref = 1.0 × 10−4 to Knref = 1.0, a smooth transition is recovered from collision dominant to free transport 
solutions.
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Fig. 18. Expectations of density, velocity and temperature inside shock tube with stochastic initial discontinuity location at different Knudsen numbers.

Fig. 19 presents the standard deviations at the same output instant. Leaving aside the uncertainty of state variables, it 
can be clearly identified that the wave structures serve as the main source of variances. Similar to the first case, with the 
enhanced sensitivity of variance solutions, the peak values of standard deviations are smeared out a bit, but it is clear that 
all the key structures are preserved.

These two case clearly shows the consistency and distinction of propagation modes between expectation value and 
variance. The capacity of current scheme to simulate multi-scale flow physics and capture evolution of uncertainties in 
different regimes has been identified. With the help of filter, this is the first stochastic kinetic solver based on the relaxation 
model and Maxwellian distribution. The performance and robustness of it have been validated, especially in the second 
challenging case.

4.4. Random boundary condition: suddenly heating wall problem

The last case comes from [22,43,44]. The initial gas is uniformly and deterministically distributed inside the domain,

ρ0 = 1, U0 = 0, T0 = 1,

with the particle distribution function being Maxwellian everywhere. From t > 0, a heating wall is suddenly put on the left 
boundary of the domain, with the temperature being

T w = 2 + 0.4z,

where z ∼ U [−1, 1] is a random variable which follows uniform distribution.
In the simulation, the physical domain x ∈ [0, 0.5] is discretized by 200 uniform cells, and the particle velocity space is 

truncated into u ∈ [−5, 5] with 48 uniform quadrature points. The variable hard-sphere model is employed with the same 
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Fig. 19. Standard deviations of density, velocity and temperature inside shock tube with stochastic initial discontinuity location at different Knudsen num-
bers.

parameter setup given in Sec. 4.3, and the Knudsen numbers in the reference state are chosen as Knref = 0.001, 0.01 and 
0.1. The Maxwell’s fully diffusive boundary is adopted at the left wall, and the right boundary is treated with extrapolation. 
The hybrid Galerkin-collocation method is employed with 6th-order gPC expansion and 11 Gauss collocation points, while 
the reference solutions are conducted by the standard collocation method with 800 uniform cells.

Fig. 20, 21 and 22 present the expectation values and standard deviations of macroscopic gas density, velocity and 
temperature at different time instants t = 0.02, 0.04, 0.06, and 0.08. As is shown, with the heating wall, the gas temper-
ature and pressure near the wall rise quickly, forming a shock wave propagating towards the bulk region. In Fig. 20(a), 
(c) and (e), when Knref = 0.001 with moderate viscosity and heat conductivity, the fine-scale structure cannot be re-
solved by the limited grid points, resulting in sharp discontinuity at the front head of shock wave, and the kinetic 
scheme becomes a shock capturing method. In this case, slight deviations exist between the numerical and reference 
solutions due to the limited resolution, but it is clear seen that all the key wave-interaction structures are preserved. 
With the increasing Knudsen number, the loose coupling between particle flight and collision leads to enhanced trans-
port phenomena, and thus the diffusion process is accelerated and the steep shock discontinuity is smoothed into a 
milder profile. Compare Fig. 22 with Fig. 20, we see that the shock wave at Knref = 0.1 travels twice faster than that 
at Knref = 0.001.

Besides the evolution of mean field, the stochastic scheme provides us the opportunity to study the modes of un-
certainty propagation from boundary to bulk region quantitatively. As shown in the second columns of Fig. 20, 21 and 
22, with randomly distributed boundary temperature, the near-wall gas holds the maximal variances of temperature and 
density, while the velocity variance is absent due to no-penetration condition across the wall. As time evolves, another 
local maximum of variance emerges and propagates rightwards inside the flow field along with the shock wave. For ve-
locity and temperature, the propagating patterns of variances show clear similarity with expectation values. However, 
the standard deviation of density decreases first and arises again towards the shock front. The local minimum of vari-
ance locates near the starting point of intermediate regions with mitigatory temperature slope. At Knref = 0.001 and 
0.01, due to the existence of viscosity, the traveling shock waves are gradually dissipated and the macroscopic flows are 
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Fig. 20. Temporal evolutions of expectations and standard deviations of density (first row), velocity (second row) and temperature (third row) near the heat 
wall at Knref = 0.001.

decelerated with smaller peak velocities. However, it seems that the strength of standard deviations is preserved and 
even enhanced as time goes, which indicates the accumulative effect for the propagation of uncertainties. Moreover, in 
all cases especially at Knref = 0.1, it is noticed that the uncertainty travels a little faster than the mean field itself, 
which demonstrates the particular wave-propagation nature of uncertainty. It may be explained by the stronger sensi-
tivity of uncertainty over mean field, which means the still gas will feel the existence of uncertainties in front of the 
shock.
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Fig. 21. Temporal evolutions of expectations and standard deviations of density (first row), velocity (second row) and temperature (third row) near the heat 
wall at Knref = 0.01.

With the one-to-one correspondence between hydrodynamic and mesoscopic formulations, the boundary heating pro-
cess also evolves particles around the wall and passes uncertainties to the particle distribution function. Fig. 23 presents the 
expectations and standard deviations of particle distribution function on the wall at different reference Knudsen numbers. 
Given the Maxwell’s diffusive boundary, the wall temperature defines the right half of particle distribution function with 
positive velocity u > 0, while the left half is inherited from inner distribution function. As seen in Fig. 23(e) and (f), it leads 
to a discontinuity in particle distribution at Knref = 0.1, where the right half possesses much more significant uncertainties 
correspondingly. With increasing Knudsen number in Fig. 23(a) to (d), frequent intermolecular interactions lead to equipar-
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Fig. 22. Temporal evolutions of expectations and standard deviations of density (first row), velocity (second row) and temperature (third row) near the heat 
wall at Knref = 0.1.

titions of energy, and thus the inner distribution functions are much closer to Maxwellian. As a result, the left and right 
parts of boundary particle distribution coincide with each other and the variances become symmetric with respect to zero 
velocity point. Fig. 24, 25 and 26 show the standard deviations of particle distribution functions at different time instants 
and reference Knudsen numbers. Since the macroscopic velocity is very small in this heat diffusion problem, the variances 
basically keep symmetric along the velocity dimension, and the uncertainty waves propagate inside the phase space by 
reshaping the heights and widths of particle distribution functions.
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Fig. 23. Expectations and standard deviations of boundary particle distribution function at Knref = 0.001 (first row), Knref = 0.01 (second row) and Knref =
0.1 (third row).

5. Conclusion

Gas dynamics is a truly multi-scale problem due to the large variations of gas density and characteristic length scales 
of the flow structures. Based on a kinetic model equation and its scale-dependent time evolving solution, a stochastic 
kinetic scheme with both standard stochastic Galerkin and hybrid Galerkin-collocation settings has been constructed in 
this paper, and both formulations allow for a unified flow simulation in all regimes. Based on multi-scale modeling, the 
solution algorithm is able to capture both equilibrium and non-equilibrium flow phenomena simultaneously in the flow 
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Fig. 24. Standard deviations of particle distribution function near the heat wall at Knref = 0.001.

field, and a continuous spectrum of cross-scale physics can be recovered along with the evolution of randomness. The 
asymptotic-preserving property of the scheme is validated through theoretical analysis and numerical tests. In the numerical 
experiments, for the first time non-equilibrium flow phenomena, such as the wave-propagation patterns of uncertainty from 
continuum to rarefied gas dynamics, could be clearly identified and quantitatively analyzed. The current scheme provides 
an efficient and accurate tool for the study of multi-scale non-equilibrium gas dynamics, and may help with the sensitivity 
analysis in design and applications of fluid machinery with uncertainty quantification. Its extension to multi-dimensional 
phase space [45], multi-physics field evolution [46] and the analysis of the unified-preserving property [47] will be further 
considered in the future work.
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Fig. 25. Standard deviations of particle distribution function near the heat wall at Knref = 0.01.
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