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It is challenging to solve the Boltzmann equation accurately due to the extremely high 
dimensionality and nonlinearity. This paper addresses the idea and implementation of 
the first flux reconstruction method for high-order Boltzmann solutions. Based on the 
Lagrange interpolation and reconstruction, the kinetic upwind flux functions are solved 
simultaneously within physical and particle velocity space. The fast spectral method is 
incorporated to solve the full Boltzmann collision integral with a general collision kernel. 
The explicit singly diagonally implicit Runge-Kutta (ESDIRK) method is employed as time 
integrator and the stiffness of the collision term is smoothly overcome. Besides, we 
ensure the shock capturing property by introducing a self-adaptive artificial dissipation, 
which is derived naturally from the effective cell Knudsen number at the kinetic scale. 
As a result, the current flux reconstruction kinetic scheme can be universally applied 
in all flow regimes. Numerical experiments including wave propagation, normal shock 
structure, one-dimensional Riemann problem, Couette flow and lid-driven cavity will be 
presented to validate the scheme. The order of convergence of the current scheme is clearly 
identified. The capability for simulating cross-scale and non-equilibrium flow dynamics is 
demonstrated.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

A highly visible direction in the study of computational fluid dynamics (CFD) is the development of high-order numerical 
schemes. Thanks to the benefits from being intuitive, robust and flexible for implementation, low-order methods, i.e., those 
which provide a maximum of second order accuracy, are arguably dominant in industrial applications. High-order methods, 
on the other hand, offer more accurate approximate solutions in a physical system. They are often more efficient than 
low-order methods in terms of the accuracy achieved per computational degree of freedom, which benefits high-fidelity 
simulation of intricate flows under a comparable computational cost [1]. However, it is more complex to implement high-
order methods and they are basically less robust due to the reduced numerical dissipation. It also remains a focus of 
research to generate high-order meshes for three-dimensional flow simulations. As a result, the use of high-order methods 
in academia and industry has so far been limited.

High-order methods have been developed in the context of the finite difference (FD), finite volume (FV) and finite 
element (FE) formulations. By extending the difference stencils, higher-order finite difference methods can be constructed 
and it is feasible to construct compact stencils [2]. Such straightforward extensions are restricted to problem domains with 
regular geometry only [3]. The finite volume methods can handle complex geometries in design, and a series of high-order 
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extensions have been developed with regular and irregular geometries [4–7]. However, the reconstructions in FV methods 
are mostly based on cell-averaged values, resulting in non-compact stencils.

The thriving finite element methods provide an alternative to design high-order methods. The discontinuous Galerkin 
(DG) method is obviously one of the most studied high-order FE algorithms [8–11], which originates from the work on 
neutron transport problem by Reed and Hill [12]. The basic idea of the DG methods lies in the unified consideration of 
spatial discretization and spectral decomposition. Within each element, the solutions are represented via polynomial basis 
functions and are allowed to be discontinuous across cell boundaries, which encourages the method to capture sharp wave 
structures that arise in fluid mechanics. Thanks to the in-cell polynomials, it is straightforward to extend the DG methods to 
arbitrary order of accuracy for smooth solutions. As a special case of DG methods, the nodal DG scheme employs Lagrange 
polynomials as basis functions to interpolate solutions between distinct nodal points [13]. Such idea is implemented simi-
larly in another class of algorithms named the spectral difference (SD) methods [14,15], but based on the differential form 
of governing equations.

Huynh’s work on the flux reconstruction (FR) approach provides profound insight into constructing high-order methods 
for any advection-diffusion type equation [16]. It establishes a general framework, where many existing approaches such as 
the nodal DG and spectral difference methods can be understood as its particular cases. Jameson used the FR formulation to 
prove that the SD method is uniformly stable in a norm of Sobolev type provided that the flux collocation points are placed 
at the zeros of the corresponding Legendre polynomial [17]. The essential connections between FR and DG methods have 
been analyzed in [18,19]. A series of flux reconstruction methods have been developed correspondingly [20–24]. Specifically, 
Vincent et al. proposed a new class of energy stable flux reconstruction methods based on Huynh’s approach, which is 
often referred as Vincent-Castonguay-Jameson-Huynh (VCJH) schemes [20]. In what follows, we refer the terminology Flux 
Reconstruction corresponding to Vincent’s formulation if unspecified.

Another hot topic in computational fluid dynamics research might go into the study of multi-scale and non-equilibrium 
flow dynamics. As an example, the Boltzmann equation provides a statistical description of particle transports and collisions 
at the mesoscopic scale, i.e. the molecular mean free path and collision time. The evolution of one-particle probability den-
sity function is followed within the phase space. Compared to macroscopic fluid equations, the Boltzmann equation provides 
many more degrees of freedom and thus can be used to describe both equilibrium and non-equilibrium systems. Hilbert’s 
6th problem [25] served as an intriguing beginning of trying to link the behaviors of an interacting many-particle system 
across different scales. It has been shown since then that hydrodynamic equations can be recovered from the asymptotic 
limits of the Boltzmann solutions [26–28].

The challenge of solving the Boltzmann equation mainly comes from two sources. First, the equation is built upon a 
seven-dimensional phase space, which is nonlinearly coupled to depict particle transports. Second, the collision operator of 
the Boltzmann equation is a complicated fivefold integral with three from velocity space and two from a unit sphere. A 
common compromise in numerical simulations is to replace the full Boltzmann collision integral with relaxation terms [29]. 
The simplified equations thus obtained are similar as radiation and neutron transport equations, where continuous efforts 
have been devoted to the construction of high-order numerical solvers [30–32]. Boscheri and Dimarco [33] developed a class 
of central WENO implicit-explicit Runge Kutta schemes for the BGK model of the Boltzmann equation. Groppi et al. followed 
a semi-Lagrangian formulation of the BGK equation and employed diagonally implicit Runge Kutta and back differentiation 
formula to construct high-order schemes [34]. Xiong et al. [35] used nodal discontinuous Galerkin method and constructed
asymptotic preserving schemes for the BGK equation in a hyperbolic scaling.

The earlier numerical solvers for Boltzmann collision integral were mostly based on the point-to-point principle [36], i.e., 
the post-collision particle velocities also need to fall onto the velocity grid. It was then proved that the computational cost of 
such methods is of O (N7), where N is the number of velocity grids in each direction, and the convergence order of accuracy 
is less than one [37]. Another idea goes to solve the collision term in spectral space by means of Fourier transforms. Bobylev 
[38] made a preliminary attempt to calculate the Boltzmann equation for Maxwell molecules in spatially uniform field. This 
method was then extended to general collision kernels with a computational cost O (N6) [39]. In 2006, Mouhot and Pareschi 
proposed a fast spectral method based on the Carleman-type Boltzmann collision operator with the cost O (M2N3 log N). 
Here M is the number of grid points for discretizing polar angles, which is much smaller than the number of velocity grids 
N in each direction. The advantageous efficiency enables the full Boltzmann simulation of multi-dimensional fluid dynamic 
problems [40–46].

The existing attempts on constructing high-order Boltzmann solvers are very limited, of which the following two are 
known to us. Jaiswal et al. [42] developed a discontinuous Galerkin fast spectral method in conjunction with Runge-Kutta 
integrator. Su et al. [43] built an implicit discontinuous Galerkin solver in the iterative fashion. In fact, given the complexity 
in evaluating the collision term, it points a promising direction to construct high-order methods for the full Boltzmann 
equation. Thanks to the higher accuracy achieved per computational degree of freedom, the use of high-order methods 
leads to a reduction of elements and can thereby reduce space and time complexity for numerical solution.

In this paper, a novel flux reconstruction kinetic scheme (FRKS) is presented for the Boltzmann equation. Based on the 
Lagrange interpolation and reconstruction, the kinetic upwind flux functions are solved simultaneously within physical and 
particle velocity space. The fast spectral method is incorporated into the FR framework to solve the full Boltzmann collision 
integral. The explicit singly diagonally implicit Runge-Kutta (ESDIRK) method [47] is incorporated as numerical integrator 
and thus the stiffness of the collision operator in the continuum flow regime can be overcome. We ensure the shock 
capturing property by introducing a self-adaptive artificial dissipation, which is derived from the effective cell Knudsen 
2
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number at the kinetic scale. As a result, the FRKS is able to capture the cross-scale flow dynamics where resolved and 
unresolved regions coexist inside a flow field.

The rest of this paper is organized as follows. Section 2 is a brief introduction of the kinetic theory of gases. Section 3
presents the formulation of the solution algorithm and its detailed implementation. Section 4 includes numerical experi-
ments to demonstrate the performance of the flux reconstruction kinetic scheme. The last section is the conclusion.

2. Kinetic theory

The gas kinetic theory describes the time-space evolution of particle distribution function f (t, x, v). With a separate 
modeling of particle transport and collision processes, the Boltzmann equation of dilute monatomic gas in the absence of 
external force is

∂ f

∂t
+ v · ∇x f = Q ( f , f ) =

∫
R3

∫
S2

[
f
(
v′) f

(
v′∗

)− f (v) f (v∗)
]
B(cos θ, g)d�dv∗, (1)

where {v, v∗} are the pre-collision velocities of two classes of colliding particles, and {v′, v′∗} are the corresponding post-
collision velocities. The collision kernel B(cos θ, g) measures the probability of collisions in different directions, where θ is 
the deflection angle and g = |g| = |v − v∗| is the magnitude of relative pre-collision velocity. The solid angle � is the unit 
vector along the relative post-collision velocity v′ − v′∗ , and the deflection angle satisfies the relation θ = � · g/g . We define 
the collision frequency as

ν(v) =
∫
R3

∫
S2

f (v∗)B (cos θ, g)d�dv∗, (2)

and therefore the Boltzmann collision integral can be written as a combination of gain and loss, i.e.,

Q ( f , f ) = Q + + Q − =
∫
R3

∫
S2

f
(
v′) f

(
v′∗

)
B(cos θ, g)d�dv∗ − ν(v) f (v). (3)

A particle distribution function is related to unique macroscopic state. The conservative flow variables can be obtained 
from the velocity moments of distribution function, i.e.

W(t,x) =
⎛
⎝ ρ

ρV
ρE

⎞
⎠ :=

∫
R3

f ψdv, (4)

where ψ = [1, v, v2/2]T is a vector of collision invariants satisfying 
∫
R3 Q ( f , f )ψdv = 0, and temperature is defined as

3

2
kT = 1

2n

∫
(v − V)2 f dv, (5)

where k is the Boltzmann constant and n is the number density of gas.
Substituting the function H = ∫

R3

∫
R3 f log f dvdx into the Boltzmann equation, we have

dH

dt
= −

∫
R3

∫
R3

(log f + 1)v · ∇x f dvdx +
∫
R3

∫
R3

(log f + 1)Q ( f , f )dvdx

=
∫
R3

∫
R3

log f Q ( f , f )dvdx.

(6)

By interchanging v, v∗ , v′ , and v′∗ , we get∫
R3

log f Q ( f , f )dv =1

4

∫
R3

∫
R3

∫
S2

B(cos θ, g)
(

f
(
v′) f

(
v′∗

)− f (v) f (v∗)
)

· (log f (v) + log f (v∗) − log f
(
v′)− log f

(
v′∗

))
d�dv∗dv

=1

4

∫
R3

∫
R3

∫
S2

B(cos θ, g) f
(
v′) f

(
v′∗

)

·
(

1 − f (v) f (v∗)
f (v′) f

(
v′ ) log

f (v) f (v∗)
f (v′) f

(
v′ )

)
d�dv∗dv.

(7)
∗ ∗

3
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The function z �→ (1 − z) log z is non-positive and zero only if z = 1, and thus we have a non-positive dissipation rate 
dH/dt ≤ 0 which is called Boltzmann’s H-theorem. As this quantity H was meant to represent the entropy of thermody-
namics, the H-theorem implies the second principle of thermodynamics, stating that the entropy is a Lyapunov function 
for the Boltzmann equation. For its maximizer M, the relation logM(v) + logM(v∗) − logM 

(
v′)− logM 

(
v′∗

) = 0 implies 
that logM must be a linear combination of the collision invariants ψ = [1, v, v2/2]T , which can be further proved to have 
the following form, i.e., the Maxwellian distribution function,

M := ρ
( m

2πkT

)3/2
exp(− m

2kT

(
v − V)2

)
, (8)

where m is the molecular mass. A rigorous derivation of the Maxwellian distribution can be found in the literature [48].

3. Solution algorithm

3.1. Formulation

Considering the domain � with N non-overlapping cells

� =
N⋃

i=1

�i,

N⋂
i=1

�i = ∅, (9)

we represent the solution of the Boltzmann equation with piecewise polynomials. Within each element �i , the particle 
distribution function is approximated by a polynomial of degree m denoted f i 	 f δ

i (t, x, v), and the corresponding flux 
function is approximated of degree m + 1, i.e. Fi 	 F δ

i (t, x, v). Therefore, the total approximate solutions are

f δ =
N⊕

i=1

f δ
i ≈ f , F δ =

N⊕
i=1

F δ
i ≈ F . (10)

For convenience, a standard coordinate can be introduced locally as �S = {r|r ∈ [−1, 1]3}. The transformation of coordi-
nates is made by the mapping

r = 	i(x) =

⎡
⎢⎢⎢⎣

2
(

x−xi−1/2
xi+1/2−xi−1/2

)
− 1

2
(

y−y j−1/2
y j+1/2−y j−1/2

)
− 1

2
(

z−zk−1/2
zk+1/2−zk−1/2

)
− 1

⎤
⎥⎥⎥⎦ . (11)

Here we take structured mesh for illustration, while the mapping in unstructured mesh can be found in [21,49]. And thus 
the Boltzmann equation in the local coordinate system becomes

∂ f̂ δ

∂t
= −∇r · F̂δ + Q̂ δ, (12)

where F̂δ and Q̂ δ are the numerical flux and collision term respectively.

3.2. Flux

3.2.1. Discontinuous flux
In the flux reconstruction method, the solution is approximated by piecewise polynomials. For brevity, let us take one-

dimensional geometry as example, while the extension to multi-dimensional case is straightforward via tensorization. We 
define the following Lagrange polynomials of degree m

lp =
m∏

q=0,q �=p

(
r − rq

rp − rq

)
, (13)

and the particle distribution function can be represented on the basis of m + 1 solution points

f̂ δ =
m∑

p=0

f̂ δ
plp. (14)

For the Boltzmann equation, the flux function is defined as

F (t, x, v) = v f (t, x, v), (15)
4
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and thus the local flux function is

F̂ (t, r, v) =
F
(

t,	−1
i (r), v

)
J i

, (16)

where J i = (xi+1/2 − xi−1/2)/2 is the Jacobian. Note that only r is defined in the local coordinate system for the above 
equation, while v is global particle velocity. Therefore, the flux polynomials can be constructed as

F̂ δD =
m∑

p=0

F̂ δD
p lp, (17)

where F̂ δD
p is the flux calculated by Eq. (16) at solution point rp . The notation δD implies that such a flux is basically 

discontinuous since it is derived directly from piecewise discontinuous solutions of f̂ δ .

3.2.2. Interactive flux
The discontinuous flux polynomials in Eq. (16) is of the same degree of freedom m as solutions, which doesn’t meet 

the accuracy requirement. Besides, it doesn’t take the information from adjacent cells into consideration and can by no 
means deal with gas-surface interactions. A natural idea is to introduce a degree m + 1 correction flux to the approximate 
transformed discontinuous flux, i.e.

F̂ δ = F̂ δD + F̂ δC . (18)

The total flux is expected to equal the correct interactive fluxes at cell boundaries, and to preserve a similar in-cell profile 
of discontinuous flux. A feasible approach, as proposed in [16], is to introduce two symmetric auxiliary functions {gL, gR}, 
which satisfy

gL(r) = gR(−r),

gL(−1) = 1, gR(−1) = 0,

gL(1) = 0, gR(1) = 1.

(19)

The corresponding correction flux can be reconstructed as

F̂ δC = ( F̂ δ I
L − F̂ δD

L )gL + ( F̂ δ I
R − F̂ δD

R )gR . (20)

Here { F̂ δD
L , F̂ δD

R } are the reconstructed discontinuous fluxes from the polynomial representation at the left and right bound-
ary of element, and { F̂ δ I

L , F̂ δ I
R } are the interactive fluxes at the boundaries. In the Boltzmann equation, we can clearly identify 

the flight directions of particle transports, and the corresponding upwind flux can be evaluated as

F̂ δ I
i,L = F̂ δD

i−1,R H(v) + F̂ δD
i,L H(1 − v),

F̂ δ I
i,R = F̂ δD

i,R H(v) + F̂ δD
i+1,L H(1 − v),

(21)

where H(x) is the heaviside step function, and v is the particle velocity in the global coordinate system.

3.2.3. Total flux
Given the total flux F̂ δ , its derivatives can be expressed as

∂ F̂ δ

∂r
= ∂ F̂ δD

∂r
+ ∂ F̂ δC

∂r
. (22)

It can be evaluated by calculating the divergences of the Lagrange polynomials and the correction functions at each solution 
point rp , i.e.

∂ F̂ δ

∂r

(
rp
) =

m∑
q=0

F̂ δD
q

dlq
dr

(
rp
)+

(
F̂ δ I

L − F̂ δD
L

) dgL

dr

(
rp
)+

(
F̂ δ I

R − F̂ δD
R

) dgR

dr

(
rp
)
. (23)

3.3. Collision

It is challenging to solve the Boltzmann collision integral accurately and efficiently. A class of solution algorithms for 
the Boltzmann collision operator is pioneered by Goldstein et al. [36]. Such approaches solve the integral with Eulerian 
grid points and interpolations [50,51]. Given the two-body collision model, the computational costs of these methods are 
larger than O (N6), where N is the number of discrete velocity points in one direction, and the order of convergence is less 
5
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than one. Another type of methods solves the Boltzmann equation with the Fourier transform. Bobylev made a preliminary 
attempt of such method for the Maxwell molecules in a homogeneous flow field [38], which was then extended to general 
collision kernels by Pareschi and Perthame [39]. In 2006, Mouhot and Pareschi proposed a fast spectral method based on the 
Carleman-type Boltzmann equation [52], which enjoys the spectral accuracy and the computational cost of O (M2 N3 log N)

[53]. Here M is the number of grid points for discretizing polar angles, which is much smaller than the number of velocity 
grids N in each direction. We use the fast spectral method to compute the Boltzmann collision operator in this paper. 
Thanks to the nodal formulation of solutions in the flux reconstruction framework, it is straightforward to apply the fast 
spectral method to the particle distribution function at each solution collocation point inside elements. In the following, the 
basic idea of this method will be introduced.

The Carleman-type Boltzmann equation can be obtained via the following transformations,

Q ( f , f ) =
∫
R3

∫
S2


g
[

f
(
v′) f

(
v′∗

)− f (v) f (v∗)
]

d�dv∗

=
∫
R3

∫
S2


g

[
f

(
v + g� − g

2

)
f

(
v∗ − g� − g

2

)
− f (v) f (v∗)

]
d�dv∗

= 2
∫
R3

∫
R3


δ
(

2y · g + y2
)[

f
(

v + y

2

)
f
(

v1 − y

2

)
− f (v) f (v∗)

]
dydv∗

= 4
∫
R3

∫
R3


δ
(

y · g + y2
)

[ f (v + y) f (v∗ − y) − f (v) f (v∗)] dydv∗

= 4
∫
R3

∫
R3


δ(y · z)[ f (v + y) f (v + z) − f (v) f (v + y + z)]dydz,

(24)

where 
 = B/g is the differential cross section, y = (g� − g)/2 and z = v∗ − v − y = −g − y are the modified integral 
elements.

As proposed in [40], a general collision kernel can be approximated as

B = C ′′
α,γ sinα+γ −1

(
θ

2

)
cos−γ

(
θ

2

)
gα, (25)

with

C ′′
α,γ = 	[(7 + α)/2]

6	[(3 + α + γ )/2]	(2 − γ /2)
Cα, (26)

where Cα is the factor given in [54]. For commonly-used molecular models, the above equation can be simplified, e.g.,

B = 1

4
gd2, (27)

for the hard-sphere (HS) model.
In the fast spectral method, the particle distribution function is discretized with N = [Nu, Nv , Nw ]T quadrature points 

and periodized in a truncated domain D = [−L, L]3. Inside a standard element �S of the flux reconstruction scheme, the 
truncated Fourier series can be constructed to approximate the particle distribution function,

f̂ δ(t, rp,v) =
m∑

q=0

f̂ δ
q (t,v)lq(rp) 	

N/2−1∑
k=−N/2

ĝδ
k(t, rp)exp (iξk · v) ,

ĝδ
k(t, rp) = 1

(2L)3

∫
D L

f̂ δ(t, rp,v)exp (−iξk · v)dv,

(28)

where rp is the location of p-th solution point inside a standard element, i is the imaginary unit, and ξk = kπ/L is the 
frequency component. To avoid confusion, f̂ δ

q is the particle distribution function at q-th solution point and ĝδ
k denotes the 

k-th mode of f̂ δ in the Fourier expansion.
6
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Similarly, the collision operator can be expanded as

Q̂ δ(t, rp,v) =
m∑

q=0

Q̂ δ
q (t,v)lq(rp) 	

N/2−1∑
k=−N/2

Ĝδ
k(t, rp)exp (iξk · v) ,

Ĝδ
k =

N/2−1∑
l,m=−N/2,(l+m=k)

ĝδ
l ĝδ

m[β(l,m) − β(m,m)],
(29)

where Ĝδ
k is the k-th mode of Q̂ δ in the Fourier expansion, l = [lx, l y, lz]T and m = [mx, my, mz]T . The kernel mode is

β(l,m) = 4
∫
R3

∫
R3

δ(y · z)
exp (iξl · y + iξm · z)dydz

=
∫∫

δ
(
e · e′)


⎡
⎣ R∫

−R

ρ exp (iρξl · e)dρ

⎤
⎦
⎡
⎣ R∫

−R

ρ ′ exp
(
iρ ′ξm · e′)dρ ′

⎤
⎦dede′

= 4
∫ ⎡

⎣ R∫
0

ρ cos (ρξl · e)dρ

⎤
⎦
⎡
⎣∫

δ
(
e · e′) R∫

0

ρ ′
 cos
(
ρ ′ξm · e′)dρ ′de′

⎤
⎦de,

(30)

where a sphere coordinate is constructed to help evaluate the integral, and {e, e′} are two vectors on the unit sphere S2. 
The splitting of l and m kernel modes can be achieved by numerical quadrature, and we refer [53] for more details of the 
fast spectral method. The convolution in Eq. (29) can be solved efficiently in the frequency domain, and we thus get the 
value of Boltzmann collision integral at all solution collocation points.

3.4. Integrator

After finishing the evaluations of fluxes and collision terms, we get the time derivatives of particle distribution function 
at the solution points {ri, v j} from Eq. (12), i.e.

∂ f̂ δ
i, j

∂t
= −∇r · F̂δ

i, j + Q̂ δ
i, j = Ĉδ

i, j, (31)

where Ĉδ
i, j = C j( f̂ δ

i ) denotes a combination of flux and collision operators. Note that Q̂ δ
i, j can become stiff in the con-

tinuum limit, when the particle distribution function is close to the Maxwellian [55]. To circumvent the CFL restriction, 
an appropriate time integrator needs to be chosen in hope that it is efficient and A- or L-stable for stiff and oscillatory 
problems.

A prevailing family of integration methods for stiff differential equations is the backward differentiation formula (BDF) 
thanks to its ease of implementation [56]. As linear multi-step methods, the BDF methods with an order greater than two 
cannot be A-stable. In spite of the attempts on constructing higher-order A-stable methods by introducing additional stages 
[57], these methods haven’t been proven to be universally effective and thus the most commonly used method is BDF-2.

An alternative integrator is the multi-stage implicit Runge–Kutta (IRK) methods [58]. In the original IRK methods, a 
fully coupled nonlinear system needs to be solved at each step or each stage. To reduce the computational complexity, the 
diagonally implicit Runge–Kutta (DIRK) and singly diagonally implicit Runge–Kutta (SDIRK) methods have been proposed 
[47]. As a further simplification, the explicit singly diagonally implicit Runge-Kutta (ESDIRK) method employs an explicit 
first step and thus reduces the degree of the nonlinear systems from SDIRK by one. The comparisons from compressible 
Navier-Stokes equations indicated that the ESDIRK methods are more efficient than the BDF methods [59,60].

In this paper, the A-L stable ESDIRK method is employed to construct the flux reconstruction scheme. We provide a brief 
introduction of this method, while the comprehensive numerical implementation can be found in [61]. The SDIRK method 
with s stages can be written into the following form,

t p = tn + cp�tn,

f̂ p
i, j = f̂ n

i, j + �tn
p∑

q=1

apqC j

(
f̂ q

i

)
, p = 1, . . . , s,

f̂ n+1
i, j = f̂ n + �tn

s∑
bpC j

(
f̂ p

i

)
.

(32)
p=1

7
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Table 1
Butcher tableau of SDIRK (left) and ESDIRK (right) methods.

c1 a11 0 · · · 0
c2 a21 a22 · · · 0
.
.
.

.

.

.

.

.

.
. . .

.

.

.

cs as1 as2 · · · ass

b1 b2 · · · bs

0 0 0 · · · 0
c2 a21 a22 · · · 0
.
.
.

.

.

.

.

.

.
. . .

.

.

.

cs as1 as2 · · · ass

b1 b2 · · · bs

For the ESDIRK method, the first step is explicit and thus a11 = 0. The Butcher tableau of SDIRK and ESDIRK methods is 
presented in Table 1, where the s or s − 1 nonlinear equation systems to be solved are clearly identified.

The advantage of DIRK-type integrators is that the computation of the stage vectors is decoupled. With Nr physical 
solution points and Nv velocity grid points, instead of solving one nonlinear system with s × Nr × Nv unknowns, s nonlinear 
systems with Nr × Nv unknowns are solved in practice. The solution algorithm at each implicit stage can be written as

f̂ p
i, j − f̂ n

i, j

app�tn
= C j

(
f̂ p

i

)
+ 1

app

p−1∑
q=1

apqC j

(
f̂ q

i

)
, (33)

where the stage vectors and derivatives can be obtained via

sp = f̂ n
i, j + �tn

p−1∑
q=1

apqC j

(
f̂ q

i

)
,

C j

(
f̂ p

i

)
= 1

app�tn

(
f̂ p

i, j − sp
)

.

(34)

3.5. Artificial dissipation

Robust shock capturing is the critical factor for evaluating high-order methods in hyperbolic conservation laws. In the 
vicinity of discontinuities in a self-evolving flow field, oscillations tend to appear due to the Gibbs phenomenon and lead 
spurious or unstable solutions. Given the less dissipation by nature, such effects are usually more severe for higher-order 
methods. For the Boltzmann equation, the shock capturing is not as strongly desired since the shock structures can be 
resolved at particle mean free path level. Here we still consider the handling of this issue as we expect to design a universal 
approach that can be applied in both resolved and unresolved regions. We show that the high dimensional information 
from the Boltzmann equation can be extracted to inject more physically consistent artificial dissipation.

The issue of introducing artificial dissipation into high-order methods has been around for a long time. The basic ideas 
can be categorized as follows.

Limiting: The idea is to co-opt the slope or flux limiters from finite volume methods based on certain rules, e.g. the 
total variation diminishing (TVD) or total variation bounded (TVB) principle. Preliminary work has been done in the context 
of discontinuous Galerkin methods [62–64]. In principle, such methods smear the discontinuous or sharp solutions across 
several adjacent cells, which significantly diminishes the significance of introducing solution points inside elements. Besides, 
a naive usage of limiters can easily lead to descending order of accuracy around local extrema.

Artificial viscosity: An alternative way is to introduce artificial dissipative term around discontinuous regions. The pio-
neer work was done in the Jameson-Schmidt-Turkel (JST) schemes [65], which introduce artificial second and fourth order 
dissipation terms to the Euler equations. The idea has been taken up in the discontinuous Galerkin [66] and spectral differ-
ence methods [67]. The artifacts are expected to vanish in smooth regions and therefore the artificial viscosity coefficients 
in front of the even-order derivatives need to be solution or grid dependent [68]. It is extremely hard to set up a viscosity 
that can be universally applied to different equations or geometries. Also, the design of boundary conditions is ambiguous 
for the artificial viscosity.

Filtering: Filters are commonly used in Galerkin-type methods [69,70]. The idea is to damp the high-order coefficients 
of the polynomials to eliminate high-frequency oscillations. For the finite element type methods, the solution inside each 
element is a polynomial in essence, and can be expressed equivalently with an orthogonal polynomial basis of the same 
degree [71]. Different filter functions can be constructed and applied to the orthogonal polynomials, e.g. the L1, L2 and the 
exponential filters [72]. The filtering plays basically as a separate step in the solution algorithm and is easy for implemen-
tation. However, if the filter is applied everywhere as limiter in the domain, its strength needs to be very carefully chosen 
so that it doesn’t destroy the key solution structure while mitigating the Gibbs phenomenon. As a result, it is more often 
used locally with a detector of trouble cells [73].

As we stand on top of the Boltzmann equation, it provides us a different point of view to construct the artificial dissipa-
tion from the underlying kinetic physics. Let us introduce the following dimensionless variables
8
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x̃ = x

L0
, t̃ = t

L0/V 0
, ṽ = v

V 0
, f̃ = f

n0 V 3
0

, (35)

where V 0 = √
2kT0/m is the most probable molecular speed, and the Boltzmann equation becomes

∂ f̃

∂ t̃
+ ṽ · ∇x̃ f̃ = 1

Kn
Q ( f̃ , f̃ ). (36)

The Knudsen number is defined as

Kn = V 0

L0ν0
= �0

L0
, (37)

where �0 and ν0 are the molecular mean free path and mean collision frequency in the reference state. For brevity, we drop 
the tilde notation to denote dimensionless variables henceforth.

As calculated in [74], the thickness of a weak shock wave is around 10 molecular mean free paths, and is therefore of 
O (10L0Kn). When the shock is resolved by the cell resolution, the Boltzmann equation is able to recover the physical solu-
tion profile. Instead, if the fluid dynamics is solved at a coarser level, the shock becomes under resolved and thus performs 
as a discontinuity. The sampling theorem indicates the best numerical solutions that can be captured under certain numer-
ical resolution. In this case, the physical shock thickness will be replaced by the numerical one anyway, where the finest 
discontinuity length equals the distance between two solution points. An effective numerical dissipation can be introduced 
following this principle.

We modify the dimensionless Boltzmann equation as follows

∂ f

∂t
+ v · ∇x f = 1

Knc
Q ( f , f ), (38)

where a cell Knudsen number is introduced instead of the original one. The definition is given by

Knc = Kn + �xm

Lc
. (39)

Here �xm denotes the minimal distance between two adjacent solution points with polynomials of degree m. A character-
istic length scale of local cell is introduced based on the gradient,

Lc = φ

∇xφ
, (40)

where φ is a physical quantity of interest. Here we choose pressure as criterion of gradient,

p = 1

3

∫
R3

(v − V) f dv, (41)

and the evaluation of derivatives is conducted the same way as section 3.2.1.
The modified Knudsen number is related to an augmented viscosity. Let us define the symmetric linearized operator first,

Lg( f ) := Q (g, f ) + Q ( f , g), (42)

where g is another class of particle distribution functions. Considering a small Knudsen number Knc = ε, we can apply the 
Chapman-Enskog expansion to approximate the particle distribution function [26],

f 	 fε = M+
∞∑

n=1

εn gn, (43)

where gn ∈R(LM). As proved in [75], LM is self-adjoint with respect to ( f , g)M = ∫
R3 f (v)g(v)/M(v)dv .

Let P denote the projection N (LM). Then applying P to the Boltzmann equation leads

P
(

∂ f

∂t
+ v · ∇x f

)
= 1

ε
P (Q ( f , f )) . (44)

It is noticeable that (Q ( f , f ), ψ)M = (Q ( f , f ), ψM)M = 0 holds, so Q ( f , f ) ∈N (LM)⊥ =R (LM) implies

P (∂t f + v · ∇x f ) = 0. (45)

Inserting the Chapman-Enskog expansion into the equation above yields

P (∂t + v · ∇x)M = −P (∂t + v · ∇x)
(
εg1 + ε2 g2 + . . .

)
. (46)
9
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By matching the coefficients on the terms of order ε, we come to

(∂t + v · ∇x)M = LM (g1) . (47)

This equation has solution only if LM (g1) ∈R(LM). Enforcing the projection onto R(LM), and making use of the invert-
ibility of LM , we get

P (∂t + v · ∇x)M = −εP (∂t + v · ∇x)L−1
M(I −P) (∂t + v · ∇x)M

= −εP (v · ∇x) L−1
M(I −P) (v · ∇x)M,

(48)

which is the compact form of the Navier-Stokes equations.
As is shown, the modified Knudsen number plays a similar role as artificial viscosity at the macroscopic level. For 

macroscopic transport equations, the artificial viscosity can be introduced via an extra flux term,

∂W

∂t
= −∇ · FC + ∇ · FD + ∇ · FA, (49)

where W is the vector of conservative variables, FC is the convective flux, FD the diffusive flux, and FA is the flux due to 
artificial viscosity. A common practice [23] to construct FA follows,

FA = ε∇W, (50)

where ε is the localized artificial viscosity. The evaluation of artificial viscosity is often related to a nonlinearly defined 
smooth detector [76], and it requires fine-tuning of the maximum amount of artificial viscosity added, to work properly. 
Besides, it requires a precise evaluation of second-order derivatives, which increases the complexity and computational 
consumption of the problem. The profound insight held by the kinetic formulation brings the benefits on these issues. 
Only the first-order derivatives need to be evaluated in Eq. (40). The viscosity is naturally connected to the cell Knudsen 
number in Eq. (39) from the Chapman-Enskog expansion. Since different hydrodynamic equations can be recovered in the 
asymptotic limits of kinetic model equations [77], the cell Knudsen number provides a universal strategy for introducing 
artificial dissipation in the advection-diffusion, Burgers’, Euler, and Navier-Stokes equations.

3.6. Summary

The solution algorithm of the current method is summarized as follows. The flux polynomials are approximated by a 
summation of the discontinuous fluxes in Eq. (17) and the correction fluxes in Eq. (20). The divergence of fluxes is there-
fore evaluated by Eq. (23). After the evaluation of numerical fluxes, we follow Eq. (39) and calculate the cell Knudsen 
number, which is passed to the fast spectral method to compute the Boltzmann collision operator at each solution collo-
cation point. We then finish the construction of the integrator of the Boltzmann equation. The time step is determined by 
the Courant–Friedrichs–Lewy condition, and an appropriate numerical integration method can be chosen based on specific 
physical problem. The flowchart of the above workflow is shown in Fig. 1.

4. Numerical experiments

In this section, we will conduct numerical experiments to validate the current scheme. In order to demonstrate the cross-
scale computing capability of the algorithm, the results at different degrees of gas rarefaction are presented. The variables 
are non-dimensionalized in the same way as in section 3.5. The monatomic gas is considered in all cases.

4.1. Wave propagation

First we study the order of accuracy of the flux reconstruction kinetic scheme. The propagation of an one-dimensional 
traveling wave is used as the test case. The initial particle distribution function is set as Maxwellian in correspondence with 
the following macroscopic variables

⎡
⎢⎢⎢⎣

ρ
U
V
W
p

⎤
⎥⎥⎥⎦

t=0

=

⎡
⎢⎢⎢⎣

1 + α sin(2πx)
1
0
0

0.5

⎤
⎥⎥⎥⎦ .

The system is non-dimensionalized by its length together with the initial unperturbed density, velocity and temperature. 
The detailed computational setup is presented in Table 2.
10



Fig. 1. Flowchart of solution algorithm.

Table 2
Computational setup of wave propagation problem.

t x Nx Polynomial Degree Points Correction
(0,1] [0,1] [5,40] Lagrange [2,3] Legendre Radau

v Nu Nv Nw Quadrature Kn α

[−8,8]3 80 28 28 Rectangular [0.0001,0.1] 0.1

Integrator Boundary CFL
ESDIRK Periodic 0.1

Table 3
Errors and convergences of FRKS3 in the wave propagation problem at Kn = 0.0001.

�x L1 error Order L2 error Order L∞ error Order

0.2 1.688797E-3 5.120427E-4 2.215626E-4
0.1 2.678810E-4 2.66 5.438995E-5 3.23 1.593844E-5 3.79
0.05 3.263045E-5 3.04 4.729391E-6 3.52 1.014085E-6 3.97
0.025 4.045788E-6 3.01 4.135537E-7 3.51 6.213239E-8 4.03

As listed, the Lagrange polynomials of degree 2 and 3 are used in the computation, resulting in third and fourth order of 
accuracy by design. Fig. 2 shows the traveling wave solutions with Nx = 20 and polynomial degree 3 at different reference 
Knudsen numbers. The reference solutions are produced by the open-source finite volume solver [78] with 1000 cells. With 
the increasing molecular mean free path, the enhanced particle transports result in stronger viscous dissipation and the 
smeared wave structure. Table 3 to 10 provide the convergence orders of the flux reconstruction kinetic schemes in design 
of the third (FRKS3) and fourth order of accuracy (FRKS4). It is clear that the current method preserves the desired accuracy 
in all Knudsen regimes.
T. Xiao Journal of Computational Physics 447 (2021) 110689
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Table 4
Errors and convergences of FRKS3 in the wave propagation problem at Kn = 0.001.

�x L1 error Order L2 error Order L∞ error Order

0.2 1.657782E-3 4.984405E-4 2.105969E-4
0.1 2.105969E-4 2.98 2.105969E-5 4.56 1.499155E-5 3.81
0.05 2.621523E-5 3.01 4.315510E-6 2.29 9.015856E-7 4.06
0.025 3.276879E-6 3.00 3.657462E-7 3.56 5.422131E-8 4.06

Table 5
Errors and convergences of FRKS3 in the wave propagation problem at Kn = 0.01.

�x L1 error Order L2 error Order L∞ error Order

0.2 1.419118E-3 4.085279E-4 1.671561E-4
0.1 1.785668E-4 2.99 3.648516E-5 3.49 1.069315E-5 3.97
0.05 2.141419E-5 3.06 3.119967E-6 3.55 6.628941E-7 4.01
0.025 2.579123E-6 3.05 2.655507E-7 3.55 4.047194E-8 4.03

Table 6
Errors and convergences of FRKS3 in the wave propagation problem at Kn = 0.1.

�x L1 error Order L2 error Order L∞ error Order

0.2 3.939578E-4 1.146447E-4 4.812587E-5
0.1 4.804452E-5 3.04 9.801638E-6 3.55 2.943710E-6 4.03
0.05 5.964627E-6 3.01 8.636624E-7 3.50 1.827464E-7 4.01
0.025 7.427253E-7 3.01 7.592175E-8 3.51 1.140249E-8 4.00

Table 7
Errors and convergences of FRKS4 in the wave propagation problem at Kn = 0.0001.

�x L1 error Order L2 error Order L∞ error Order

0.2 1.677265E-4 4.413744E-5 1.877038E-5
0.1 1.027635E-5 4.03 1.826210E-6 4.60 4.743682E-7 5.31
0.05 6.395205E-7 4.01 8.050237E-8 4.50 1.508162E-8 4.98
0.025 4.122186E-8 3.96 3.654658E-9 4.46 4.724505E-10 5.00

Table 8
Errors and convergences of FRKS4 in the wave propagation problem at Kn = 0.001.

�x L1 error Order L2 error Order L∞ error Order

0.2 1.647013E-4 4.236274E-5 1.668588E-5
0.1 1.013567E-5 4.02 1.788745E-6 4.57 4.867548E-7 5.10
0.05 6.243648E-7 4.02 7.876072E-8 4.51 1.501070E-8 5.02
0.025 3.962609E-8 3.98 3.528171E-9 4.48 4.704976E-10 5.00

Table 9
Errors and convergences of FRKS4 in the wave propagation problem at Kn = 0.01.

�x L1 error Order L2 error Order L∞ error Order

0.2 1.444726E-4 3.450912E-5 1.172881E-5
0.1 8.303901E-6 4.12 1.491799E-6 4.53 4.560153E-7 4.68
0.05 5.107348E-7 4.02 6.450361E-8 4.53 1.445434E-8 4.98
0.025 3.210330E-8 3.99 2.853924E-9 4.50 4.355419E-10 5.05

Table 10
Errors and convergences of FRKS4 in the wave propagation problem at Kn = 0.1.

�x L1 error Order L2 error Order L∞ error Order

0.2 3.957461E-5 9.537192E-6 3.142089E-6
0.1 2.353530E-6 4.07 4.209624E-7 4.50 1.209994E-7 4.70
0.05 1.470697E-7 4.00 1.853411E-8 4.51 3.762843E-9 5.01
0.025 9.404308E-9 3.97 8.354799E-10 4.47 1.189082E-10 4.98
12



T. Xiao Journal of Computational Physics 447 (2021) 110689
Fig. 2. Traveling wave solutions with Nx = 20 and polynomial degree 3 at different reference Knudsen numbers. (For interpretation of the colors in the 
figures, the reader is referred to the web version of this article.)

Table 11
Computational setup of normal shock structure problem.

x Nx Polynomial Degree Points Correction
[−25,25] 50 Lagrange 2 Legendre Radau

v Nu Nv Nw Quadrature Kn
[−14,14]3 64 32 32 Rectangular 1.0

Ma Integrator Boundary CFL
[2,3] Bogacki–Shampine Dirichlet 0.2

4.2. Normal shock structure problem

We continue considering a well-resolved problem, i.e. the normal shock wave structure. The initial particle distribution 
function is set as Maxwellian in correspondence with the following macroscopic variables

⎡
⎢⎢⎢⎣

ρ
U
V
W
T

⎤
⎥⎥⎥⎦

t=0,L

=

⎡
⎢⎢⎢⎣

ρ−
U−
0
0

T−

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣

ρ
U
V
W
T

⎤
⎥⎥⎥⎦

t=0,R

=

⎡
⎢⎢⎢⎣

ρ+
U+
0
0

T+

⎤
⎥⎥⎥⎦ .

Based on the reference frame of shock wave, the upstream and downstream gases are related with the well-known Rankine-
Hugoniot relation,

ρ+
ρ−

= (γ + 1)Ma2

(γ − 1)Ma2 + 2
,

U+
U−

= (γ − 1)Ma2 + 2

(γ + 1)Ma2
,

T+
T−

=
(
(γ − 1)Ma2 + 2

) (
2γ Ma2 − γ + 1

)
(γ + 1)2Ma2

,

(51)

where Ma is the upstream Mach number, and γ = 5/3 is the specific heat ratio of monatomic molecule. The reference 
state is set with the upstream flow conditions. As the shock profile is resolved in this case, no stiffness will be introduced 
and thus we employ the Bogacki-Shampine integrator, which is a third-order explicit Runge-Kutta method [79]. The system 
is non-dimensionalized by the upstream incoming mean free path and flow variables. The detailed computation setup is 
presented in Table 11.

Fig. 3 provides the profiles of density, U -velocity and temperature at different upstream Mach numbers. The reference 
solutions are produced by the finite volume fast spectral method [78] with 500 cells. As is shown, excellent agreement has 
13
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Fig. 3. Profiles of density, U -velocity and temperature across normal shock wave at different upstream Mach numbers.

Table 12
Errors and convergences in the shock structure problem at Ma = 2.

�x L1 error Order L2 error Order L∞ error Order

12.5 7.240296 5.994736 5.913266
6.25 8.748095E-1 3.05 3.693928E-1 4.02 2.836075E-1 4.38
3.125 1.089325E-1 3.00 4.784657E-2 2.95 3.998814E-2 2.83
1.5625 2.946166E-2 2.89 3.769315E-3 3.67 2.346609E-3 4.09

Table 13
Errors and convergences in the shock structure problem at Ma = 3.

�x L1 error Order L2 error Order L∞ error Order

12.5 7.919016 6.602087 6.523551
6.25 9.825932E-1 3.01 5.162378E-1 3.68 4.346329E-1 3.91
3.125 1.228242E-1 3.00 3.971257E-2 3.70 2.363271E-2 4.20
1.5625 1.566627E-2 2.97 3.337230E-3 3.57 1.465541E-3 4.01

been achieved between the flux reconstruction solutions under a coarse mesh and the reference results. It demonstrates 
the capability of the current scheme to simulate the evolution of non-equilibrium particle distributions. Table 12 and 13
show the convergence test with respect to the reference solutions at Ma = 2 and Ma = 3. As presented, the desired spatial 
accuracy is achieved in this steady problem.

4.3. Riemann problem

Now we shift to the problem where resolved and unresolved regions coexist in the solution domain. We employ the Sod 
shock tube problem, which is a standard one-dimensional Riemann problem. The particle distribution function is initialized 
as Maxwellian, which corresponds to the following macroscopic variables⎡

⎢⎢⎢⎣
ρ
U
V
W
p

⎤
⎥⎥⎥⎦

t=0,L

=

⎡
⎢⎢⎢⎣

1
0
0
0

0.5

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣

ρ
U
V
W
p

⎤
⎥⎥⎥⎦

t=0,R

=

⎡
⎢⎢⎢⎣

0.125
0
0
0

0.1

⎤
⎥⎥⎥⎦ .

To test the capability of the current scheme to solve resolved/unresolved wave structures and the corresponding multi-scale 
performance, simulations are performed with different reference Knudsen numbers Kn = [0.0001, 1], with respect to typical 
continuum, transition, and free molecular flow regimes. The system is non-dimensionalized by its length and the initial 
left-hand variables. The detailed computation setup is listed in Table 14.

Fig. 4 presents the profiles of density, U -velocity and temperature inside the shock tube at the output instant t = 0.2
under different Knudsen numbers. The reference solutions are derived from the Euler and collisionless Boltzmann equa-
tions. In the continuum regime with Kn = 0.0001, the molecular mean free path is much less than the grid size, and thus 
the current method becomes a shock capturing method under limited resolution in space and time. As shown in Fig. 4a, 
14
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Table 14
Computational setup of Sod shock tube problem.

t x Nx Polynomial Degree Points Correction
[0,0.15] [0,1] 50 Lagrange 2 Legendre Radau

v Nu Nv Nw Quadrature Kn CFL
[−8,8]3 64 32 32 Rectangular [0.0001,1] 0.15

Integrator Boundary
ESDIRK-3 Dirichlet

Fig. 4. Profiles of density, U -velocity and temperature at t = 0.15 in the Sod shock tube at different reference Knudsen numbers.

oscillatory solutions from the original flux reconstruction method emerge around the shock wave front due to the Gibbs 
phenomenon. Conversely, the adaptive artificial dissipation introduced in the current scheme eliminates the oscillations ef-
fectively while preserving the sharp wave structures. With increasing Knudsen number and molecular mean fee path, the 
enhanced transport phenomena widen the waves and reduce the gradients of characteristic variables. Therefore, the solu-
tion profiles become resolvable under the current resolution. From Kn = 0.0001 to Kn = 1, the artificial dissipation doesn’t 
destroy the solutions from the current method, and a smooth transition is recovered from the Euler solutions of Riemann 
problem to the collisionless Boltzmann solutions. Table 15 and 16 present the convergence test at Kn = 0.01 and Kn = 1. 
We skip the case Kn = 0.001 since the solutions are multivalue functions at the discontinuity in the continuum limit. It is 
pointless to discuss order of accuracy in this context. The finite-volume solution on the fine mesh Nx = 500 [78] is used as 
benchmark reference. As shown, the design accuracy is preserved in the beginning phase of the grid convergence test. Slight 
degeneration of accuracy can be observed when the mesh size becomes comparable to the one used to produce reference 
solution. The numerical error between the fine-mesh solution and the exact solution prevents us from seeing the exact 
convergence order.
15
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Table 15
Errors and convergences in the Sod problem at Kn = 0.01.

�x L1 error Order L2 error Order L∞ error Order

0.25 8.271109E-2 4.530277E-2 4.290290E-2
0.125 1.675462E-2 2.30 4.626260E-3 3.29 2.063258E-3 4.38
0.0625 2.080120E-3 3.01 4.303809E-4 3.43 1.735994E-4 3.57
0.03125 4.043217E-4 2.36 6.450670E-5 2.74 2.179477E-5 2.99

Table 16
Errors and convergences in the Sod problem at Kn = 1.

�x L1 error Order L2 error Order L∞ error Order

0.25 8.754610E-2 5.050068E-2 4.755496E-2
0.125 1.106087E-2 2.98 3.252022E-3 3.96 1.990556E-3 4.58
0.0625 1.066224E-3 3.37 2.733360E-4 3.57 2.015528E-4 3.30
0.03125 2.466023E-4 2.11 6.570749E-5 2.06 3.744961E-5 2.43

Table 17
Computational setup of Couette flow.

x Nx Polynomial Degree Points Correction
[−1,1] 30 Lagrange 2 Legendre Radau

v Nu Nv Nw Quadrature Kn
[−8,8]3 72 72 28 Rectangular [0.2/

√
π,20/

√
π ]

Integrator Boundary CFL
Bogacki–Shampine Maxwell 0.15

Fig. 5. Profiles of V -velocity and surface shear stress in the Couette flow at different reference Knudsen numbers.

4.4. Couette flow

The former cases consider only periodic or Dirichlet boundary conditions. In this case, we employ the Couette flow as an 
example to test the gas-surface interactions in the flux reconstruction kinetic scheme. The initial particle distribution is set 
as Maxwellian based on the homogeneous fluids,⎡

⎢⎢⎢⎣
ρ
U
V
W
T

⎤
⎥⎥⎥⎦

t=0

=

⎡
⎢⎢⎢⎣

1
0
0
0
1

⎤
⎥⎥⎥⎦ .

The boundary temperatures at both ends of the domain are set as T w = 1, and the velocities differ as VwL = [0, −1, 0]T , 
Vw R = [0, 1, 0]T . Maxwell’s diffusive boundary is adopted to model the gas-surface interaction. The system is non-
dimensionalized by its length the initial flow variables. The detailed computational setup is recorded in Table 17.

Fig. 5a shows the macroscopic V -velocity profiles in the transition regimes with three Knudsen numbers Kn =
{0.2/

√
π, 2/

√
π, 20/

√
π}. The current numerical solutions agree perfectly with the reference solutions, which are produced 
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Table 18
Computational setup of lid-driven cavity flow.

x y Nx Nx Polynomial Degree
[0,1] [0,1] 15 15 Lagrange 2

Points Correction v Nu Nv Nw

Legendre Radau [−8,8]3 32 32 28

Quadrature Kn Integrator Boundary CFL
Rectangular [0.2/

√
π,20/

√
π ] Bogacki–Shampine Maxwell 0.15

Fig. 6. Contours of density with streamlines and temperature with heat flux vectors inside the cavity.

by the information-preserving DSMC method [80]. Fig. 5b draws the relation of surface shear stress versus Knudsen number, 
where the collisionless solution is used to determine the normalization factor τ0. It is clear that the current solutions fall 
exactly on the linearized Boltzmann solutions [81] across different Knudsen regimes.

4.5. Lid-driven cavity flow

In the last case, we test the current scheme with multi-dimensional geometry. The lid-driven cavity is employed as the 
test problem. The initial particle distribution is set as Maxwellian with the homogeneous fluids,⎡

⎢⎢⎢⎣
ρ
U
V
W
T

⎤
⎥⎥⎥⎦

t=0

=

⎡
⎢⎢⎢⎣

1
0
0
0
1

⎤
⎥⎥⎥⎦ .

The solution domain is enclosed by four solid walls with T w = 1. The upper wall moves in the tangent direction with 
Vw = [0.15, 0, 0]T , and the rest three walls are kept still. Maxwell’s diffusive boundary is adopted to all the walls. The 
system is non-dimensionalized by its length and the initial flow variables. The detailed computational setup is provided in 
Table 18.

Fig. 6 shows the contours of U -velocity with streamlines and temperature with heat flux vectors inside the cavity. 
As explained in [82], the anti-Fourier’s heat flux driven by stress is clearly identified. Fig. 7 shows the velocity profiles 
along the vertical and horizontal central lines of the cavity. The DSMC solutions with 60 × 60 physical mesh are plotted 
for comparison. The quantitative comparison demonstrates that the current scheme is able to provide equivalent DSMC 
solutions in the transition regime with much coarser mesh.

5. Conclusion

Non-equilibrium statistical mechanics is profoundly built upon the Boltzmann equation. For the first time, a high-order 
kinetic scheme based on flux reconstruction is proposed for solving the Boltzmann equation in this paper. The upwind flux 
solver is integrated with flux reconstruction formulation seamlessly throughout the phase space. The fast spectral method 
is constructed to solve the exact Boltzmann collision integral with an arbitrary collision kernel. Besides, the explicit singly 
diagonally implicit Runge-Kutta method ensures the compatible accuracy in time direction and overcomes the stiffness of 
17
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Fig. 7. Velocity profiles along vertical and horizontal central lines inside the cavity.

collision term in the continuum flow regime. The current method provides an accurate and efficient tool for the study of 
cross-scale and non-equilibrium flow phenomena. It shows the potential to be extended to other complex systems, e.g. 
astrophysics [83], plasma physics [84], uncertainty quantification [85], etc.
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