
Journal of Computational Physics 443 (2021) 110521
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

Using neural networks to accelerate the solution of the

Boltzmann equation

Tianbai Xiao ∗, Martin Frank

Karlsruhe Institute of Technology, Karlsruhe, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Available online 17 June 2021

Keywords:
Boltzmann equation
Kinetic theory
Non-equilibrium flow
Deep learning
Neural network

One of the biggest challenges for simulating the Boltzmann equation is the evaluation of
fivefold collision integral. Given the recent successes of deep learning and the availability
of efficient tools, it is an obvious idea to try to substitute the calculation of the collision
operator by the evaluation of a neural network. However, it is unlcear whether this
preserves key properties of the Boltzmann equation, such as conservation, invariances, the
H-theorem, and fluid-dynamic limits.
In this paper, we present an approach that guarantees the conservation properties
and the correct fluid dynamic limit at leading order. The concept originates from a
recently developed scientific machine learning strategy which has been named “universal
differential equations”. It proposes a hybridization that fuses the deep physical insights
from classical Boltzmann modeling and the desirable computational efficiency from
neural network surrogates. The construction of the method and the training strategy are
demonstrated in detail. We conduct an asymptotic analysis and illustrate the multi-scale
applicability of the method. The numerical algorithm for solving the neural network-
enhanced Boltzmann equation is presented as well. Several numerical test cases are
investigated. The results of numerical experiments show that the time-series modeling
strategy enjoys the training efficiency on this supervised learning task.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Modern data-driven techniques widen the possibility of solving the problems that seemed beset with difficulties in
the past, e.g., computer vision [1] and natural language processing [2]. The same momentum is building in computational
sciences, leading to the so-called scientific machine learning (SciML) [3]. As typical classification and regression tasks in
classical machine learning applications mostly handle discrete and localized data, in the SciML, information at different lo-
cations is expected to be connected by mathematical and physical constraints, i.e., ordinary and partial differential equations
(PDEs). Besides, given the high expense of conducting experiments and numerical simulations, e.g., for the research of fluid
dynamics and particle physics, it is challenging to establish an all-round data base. While the generalization performance
of neural networks based on small training sets is questionable, quantitative interpretability lies at the core of scientific
modeling and simulation, which more or less collides with the blackbox nature of multi-layer artificial neural networks
(NNs) employed in the deep learning.

* Corresponding author.
E-mail addresses: tianbaixiao@gmail.com (T. Xiao), martin.frank@kit.edu (M. Frank).
https://doi.org/10.1016/j.jcp.2021.110521
0021-9991/© 2021 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jcp.2021.110521
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2021.110521&domain=pdf
mailto:tianbaixiao@gmail.com
mailto:martin.frank@kit.edu
https://doi.org/10.1016/j.jcp.2021.110521

T. Xiao and M. Frank Journal of Computational Physics 443 (2021) 110521
Several approaches that try to fuse the advantages of differential equations and machine learning have emerged recently.
One intuitive strategy falls into the search of NN surrogates for high-dimensional PDE solutions [4–9]. For example, the
physics-informed neural networks (PINNs) encode prior knowledge from differential equations or existing data into the
deep learning models. By minimizing a cost function that represents the residual of differential equations, the numerical
solutions can be iterated along with the training process. PINNs have led to a wide range of applications in fluid mechanics
[10–14], biology [15,16], materials science [17–19], and uncertainty quantification [20,21].

The approximation approaches of direct data-to-solution mapping of physical systems have also been discovered in the
SciML community [22–25]. For example, Raissi et al. proposed a method that is called hidden fluid mechanics to learn
velocity and pressure fields directly from flow visualizations [26]. Thanks to the capability of interpolating data by NNs,
such a method is robust with respect to low resolution and noises in the observation data. In general, these strategies are
mostly data driven and have no much correlation with underlying physics.

Another direction denotes the data-driven discovery of governing equations [27–30]. For example, the sparse identifica-
tion of nonlinear dynamical systems (SINDy) employs sparse regression to choose most probable equations from data [31]. It
provides an efficient tool for identifying partial differential equations, e.g. the transport coefficients used in the Navier-Stokes
equations, and require a relatively small training dataset. SINDy is able to incorporate existing knowledge into an unknown
system to be studied but the automatic combination of alternatives relies on a simple recombination of differential terms.

As we look into multi-scale fluid mechanics with the upscaling effects from atomistic level, more complex dynamical
system, e.g. the phase space evolution, could emerge. A typical example is the Boltzmann equation, which describes the
evolution of the one-particle probability density function f (t, x, u), which describes the probability of finding a particle
with a certain location x and speed u. In the absence of external force field, the Boltzmann equation reads as follows,

∂ f

∂t
+ u · ∇x f = Q (f) =

ˆ

R3

ˆ

S2

B(cosβ, g)
[

f (u′) f (u′∗) − f (u) f (u∗)
]

d�du∗, (1)

where {u, u∗} are the pre-collision velocities of two colliding particles, and {u′, u∗′} are the corresponding post-collision
velocities. The collision kernel B(cos β, g) measures the strength of collisions in different directions, where g = |g| = |u −u∗|
is the magnitude of relative pre-collision velocity, � is the unit vector along the relative post-collision velocity u′ − u∗′ , and
the deflection angle β satisfies the relation cos β = � · g/g .

The Boltzmann equation serves as the basis of many high-level theories, e.g. non-equilibrium thermodynamics and ex-
tended hydrodynamics [32]. As is shown, the Boltzmann equation is an integro-differential equation, with its right-hand
side being a fivefold integral over phase space. This convolution-type collision operator brings tremendous difficulty to
the application of PINN since a direct differentiable structure is absent. On the other hand, despite the development of
classical numerical solvers, the computational cost of solving the Boltzmann collision integral can be prohibitive. Consider
the fast spectral method [33], an efficient Boltzmann solution algorithm which employs fast Fourier transform to com-
pute convolutions within spectral space. The computational cost of it is O (M2N D

x N D
u log Nu), where Nx , Nu and M are

the numbers of grids in physical, velocity and angular space with dimension D [34]. This makes it unrealistic to perform
a direct numerical simulation for a real-world application in aerospace industry. Moreover, due to the high-dimensional
nature of intermolecular interactions, it is sometimes cumbersome to adopt the Boltzmann solver if we are interested in
one-dimensional distribution of solutions only, e.g. the profiles of macroscopic variables inside a shock tube.

The goal of current work is to use deep neural networks as building blocks in a numerical method to solve the Boltzmann
equation. Besides the complicated high-dimensional integro-differential structure, the Boltzmann equation as a physical
model at the same time possesses an intricate structure of many-particle system that a numerical method needs to pre-
serve. Therefore, as a universal function approximator in the latent space [35], artificial neural networks can be beneficial,
but cannot be used out-of-the-box. In this paper, we consider the idea of hybridizing mechanical and neural dynamics into
a learnable framework, which originates from a recently developed scientific machine learning strategy named as “universal
differential equations” [36]. The universality refers to the differential equations defined in part by universal approximators.
Specifically, we keep the particle transport model of original Boltzmann equation, and build the NN-enhanced collision
model on the basis of kinetic relaxation model. The proposed neural network-enhanced Boltzmann equation maintains a
well balance of interpretability and flexibility, and we prove that the current approach guarantees the conservation proper-
ties and the correct fluid dynamic limit at leading order.

The paper is organized as follows. In Sec. 2 we introduce some fundamental concepts in the kinetic theory of gases.
Sec. 3 presents the main idea of this work, and Sec. 4 details the numerical solution algorithm. Sec. 5 contains the numerical
experiments for both spatially homogeneous and inhomogeneous cases to validate the current method. The last section is
the conclusion.

2. Kinetic theory of gases

Kinetic theory depicts the evolution of a many-particle system at the scale of mean free path and collision time. It
provides a one-to-one correspondence with the macroscopic description, which can be regarded as its limiting case. Taking
moments through particle velocity space, we get the macroscopic mass, momentum and energy density,
2

T. Xiao and M. Frank Journal of Computational Physics 443 (2021) 110521
W(t,x) =
⎛
⎝ ρ

ρU
ρE

⎞
⎠ =

ˆ
f ψdu, (2)

where ψ = (
1,u, 1

2 u2
)T

is a vector of collision invariants. The collision operator satisfies the compatibility condition for
conservative variables, i.e.,ˆ

Q (f)ψdu = 0. (3)

Substituting the H function,

H(t,x) = −
ˆ

f ln f du,

into the Boltzmann equation we have

∂ H

∂t
= −

ˆ
(1 + ln f)

∂ f

∂t
du = −

˚
(1 + ln f)

(
f ′ f ′∗ − f f∗

)
Bd�dudu∗. (4)

From the H-theorem [37] we know that the physical entropy is locally maximal when f is a Maxwellian,

M(t,x,u, z) = ρ

(
λ

π

) 3
2

e−λ(u−U)2
, (5)

where λ = m/(2kT), m is molecule mass and k is the Boltzmann constant.
Since intermolecular collisions drive the system towards Maxwellian, simplified relaxation models, e.g. the Bhatnagar-

Gross-Krook (BGK) [38] and Shakhov [39], have been constructed. It writes

∂ f

∂t
+ u · ∇x f = Q (f) = ν(f + − f), (6)

where ν is collision frequency. For the BGK model, the equilibrium state is Maxwellian f + = M, while in the Shakhov
model it takes the form

f + = M
[

1 + (1 − Pr)(u − U) · q
(

(u − U)2

RT
− 5

)
/(5pRT)

]
, (7)

where Pr is the Prandtl number, q is heat flux, p is pressure and R is gas constant. The relaxation models avoid the
complicated fivefold Boltzmann integral. They still possess some key properties of the original Boltzmann equation, e.g. the
H-theorem, but fail to provide exactly equivalent Boltzmann solutions as the distribution function deviates far from the
Maxwellian.

3. Neural network-enhanced Boltzmann equation

3.1. Idea

One intuitive strategy is to build a neural network surrogate of the nonlinear function described by the Boltzmann
equation. Instead of modeling the data-to-solution mapping explicitly, one can lean on the structure of Boltzmann equation
and incorporate the neural network function as the derivative term. It follows the form of a newly developed family of deep
neural network models, i.e. the neural ordinary differential equation (ODE) [40], and the nomenclature can be inherited here
as the neural Boltzmann equation (NBE),

ft = NNθ (f , t), (8)

where θ denotes the collection of all the parameters inside neural network (NN).
The idea of Neural ODEs originates from the structure of some state-of-the-art neural networks, e.g. residual neural

network, which updates the hidden state with the strategy

hn+1 = hn +F(hn, θn), (9)

where n ∈ {0, 1, . . . , N} is the index of hidden layers. Such an iterative stepping can be regarded equivalently as N forward
Euler steps (with a fixed step size δt = 1) for solving differential equations. Therefore, in the limiting case with infinite
number of layers, the discrete iteration can be concluded by an ordinary differential equation in terms of neural network,
i.e. the so-called neural ODE,
3

T. Xiao and M. Frank Journal of Computational Physics 443 (2021) 110521
ht = F(h, θ, t), t ∈ (0, N], (10)

where t ∈ (0, N] is introduced as an artificial time [41]. Eq. (10) forms an initial value problem (IVP) for the neural network.
Since the derivatives of hidden layers are parameterized with continuous dynamics, the parameters of original discrete
sequence layers in Eq. (9) can be regarded as seamlessly coupled. As a result, for a typical supervised learning task, the
required number of parameters drops correspondingly [40]. Modern ODE solvers can be employed to solve the IVPs with
monitoring of desirable accuracy and efficiency. No intermediate quantities of forward pass need to be stored, leading to a
constant memory cost as a function of depth. Also, the continuous modeling make it much easier to perform interpolation
and extrapolation beyond the training data. It is worth mentioning that the dependence on the parameters is typically
non-smooth and therefore the optimization is still challenging with the continuous formulation in time.

In spite of the advantages, due to the blackbox nature of neural networks, this approach does not guarantee any property
of the Boltzmann equation under the optimization and estimation errors within training and computing processes. One
rather general approach to enforce physical constraints has been presented under the name universal differential equations
(UDE) [36], in which the model is constructed cooperatively by mechanical formulations and neural networks as universal
function approximators. Continuing with the example above, we rewrite the kinetic model and call it universal Boltzmann
equation (UBE)

ft = Q (f , t,NNθ (f , t)), (11)

where Q is the particle collision term, and NNθ (f , t) denotes the neural network model that plays a portion necessary for
the self-contained physical description but missed from the mechanical modeling.

The key idea to go beyond the mere approximation of the right-hand side (and thus to obtain a neural differential
equation) is to split the right-hand side into a mechanistic part and a part to be approximated. In this paper, we employ
the BGK equation as the mechanical part of the UBE, leaving the difference to the full Boltzmann collision operator to be
approximated by a neural network. The concrete UBE is designed as follows,

∂ f

∂t
+ u · ∇x f = ν(M− f) + NNθ (M− f), (12)

where NNθ can be a concrete type of neural network, with the input set as the difference between the Maxwellian and
current particle distribution function.

The proposed UBE has the following benefits. First, the BGK model has a similar structure as the Boltzmann equation,
while the computational cost is of O (N D), where N is the number of discrete velocity grids and D is dimension. Therefore,
it is significantly more efficient than solving the full Boltzmann collision integral.

Second, it automatically ensures the asymptotic limits. Let us consider the Chapman-Enskog method for solving Boltz-
mann equation [42], where the distribution function is expanded with respect to collision frequency ν ,

f �
∑
i=0

ν i f (i), f (0) = M. (13)

Take the zeroth order truncation, and consider an illustrative L-layer perceptron network free of biases,

NNθ (x) = layerL(. . . layer2(A(layer1(x)))), layer(x) = wT x, (14)

where each layer is a matrix multiplication followed by activation function A that can adpot sigmoid, tanh, ReLU, etc. Given
the zero input from (M − f), the contribution from the collision term is removed naturally. Taking moments with respect
to collision invariants,

ˆ ⎛
⎝ 1

u
1
2 u2

⎞
⎠ (Mt + u · ∇xM)du = 0, (15)

we arrive at the corresponding Euler equations,

∂

∂t

⎛
⎝ ρ

ρU
ρE

⎞
⎠ + ∇x ·

⎛
⎝ ρU

ρU ⊗ U
U(ρE + p)

⎞
⎠ = 0. (16)

As is shown, the asymptotic property of UBE in the hydrodynamic limit is preserved independent of the training parame-
ters θ . The above analysis illustrates the design idea of the current model. It is widely believed that neural model performs
better if the architecture is designed to be consistent with the solution structure. With the splitting of BGK relaxation and
its deviation from the exact Boltzmann collision integral, the relaxation term can be regarded as pre-conditioning of the
neural differential equation, and the inevitable optimization and prediction errors will not affect the continuum limit from
such a biases-free neural network.
4

T. Xiao and M. Frank Journal of Computational Physics 443 (2021) 110521
Fig. 1. An illustrative flow chart for the collision term evaluation in the universal Boltzmann equation.

Another advantage from current strategy is the training efficiency. Since the BGK relaxation term provides a qualitative
mechanism to describe gas evolution, as analyzed in [43–45], after several collisions from initial non-equilibrium distri-
bution, the difference between Boltzmann integral and BGK model becomes minor. Therefore, now the task left becomes
to train a neural network that approximates values close to zero, which will significantly accelerate the convergence of θ .
Fig. 1 provides an illustration for the collision term evaluation in the universal Boltzmann equation, and the detailed training
strategy will be presented in the next subsection.

3.2. Training strategy

Training NBE and UBE with datasets consisting of exact or reference solutions is a typical supervised learning task. It
amounts to an optimization problem which minimizes the difference between the current predictions and ground-truth
solutions. For example, a cost function can be defined based on the Euclidean distance along discrete grid points,

C(θ) =
∑
i, j,n

|| fθ − fref||2(tn,xi,u j) + ζ

L∑
l=1

||θ(l)||2. (17)

The latter plays as an regularization term which sums over the squared weight parameters of the network to mitigate
overfitting, where θ(l) denotes the weight parameters of l-th layer, L is the total number of layers, and the regularization
strength is chosen as ζ = 1.0 × 10−6.

In general, the optimization algorithms can be classified into gradient-free and gradient-required methods. Thanks to
the rapid development of automatic differentiation (AD), the latter one becomes prevalent in machine learning community.
There are two modes of AD, i.e. the forward-mode and the reverse-mode, which differ from the direction of evaluating the
chain rules, and here we focus on the latter. Consider a smooth function y = F(x), the reverse-mode AD computes the dual
(conjugate-transpose) matrix of Jacobian J = ∇F at x = x0 with the chain rule,

(J (F) (x0))
∗ = (J (G1) (x0))

∗ × · · · × (
J (Gk)

(
xk−1

))∗
, (18)

with xi := Gi (xi−1) for i = 1, . . . , k − 1.
As the reverse-mode AD can naturally be expressed using pullbacks and differential one-forms from geometric perspec-

tive, in this work we employ open-source package Zygote.jl [46], which utilizes pullback functions to perform reverse-mode
AD. Different from the tracing methods used in Tensorflow [47] and PyTorch [48], it employs the source-to-source mode via
differentiable programming, i.e. generates derivative directly from pullback functions. Such an approach enjoys the benefits
of, e.g. low overhead, efficient support for control flow and user-defined data types and dynamism.

When the derivatives of cost function have been evaluated by automatic differentiation, gradient-descent-type op-
timizers can be employed, e.g. the standard stochastic gradient decent method, ADAM [49], Nesterov [50], Broyden–
Fletcher–Goldfarb–Shanno (BFGS) [51], or its limited-memory version (L-BFGS). In this paper, the dataset for training neural
networks is produced by the fast spectral method [52] with respect to different initial value problems of homogeneous
Boltzmann equation

ft =
ˆ

R3

ˆ

S2

B(cosβ, g)
[

f (u′) f (u′∗) − f (u) f (u∗)
]

d�du∗. (19)

The open-source solution algorithm is implemented in Kinetic.jl [53], which works together with DifferentialEquations.jl
ecosystem [54] and generates time-series data with desirable orders of accuracy along evolution trajectories.
5

T. Xiao and M. Frank Journal of Computational Physics 443 (2021) 110521
4. Solution algorithm

4.1. Update algorithm

We construct the numerical algorithm within finite volume framework. The notation of cell-averaged particle distribution
function in a control volume is adopted,

f (tn,xi,u j) = f n
i, j = 1

�i(x)� j(u)

ˆ

�i

ˆ

� j

f (tn,x,u)dxdu, (20)

where �i and � j are the cell area in the discrete physical and velocity space. The update of distribution function can be
formulated as

f n+1
i, j = f n

i, j + 1

�i

tn+1ˆ

tn

n f∑
r=1

Fr
Srdt +
tn+1ˆ

tn

Q (f i, j)dt, (21)

where Fr is the time-dependent flux function of distribution function at cell interface,
Sr is the interface area and nr is
the number of interfaces per cell.

4.2. Interface flux

For the numerical flux evaluation, we first reconstruct the particle distribution function around the cell interface, e.g.
around xi+1/2,

f L
i+1/2, j = f i, j,

f R
i+1/2, j = f i+1, j,

(22)

with first-order accuracy and

f L
i+1/2, j = f i, j + ∇x f i, j · (xi+1/2 − xi),

f R
i+1/2, j = f i+1, j + ∇x f i+1, j · (xi+1/2 − xi+1),

(23)

with second-order accuracy, where ∇x f is the reconstructed gradient with limiters.
The interface distribution function is defined in an upwind way, i.e.,

f i+1/2, j = f L
i+1/2, j H

[
u j

] + f R
i+1/2, j(1 − H

[
u j

]
), (24)

where H[x] is the Heaviside step function. The corresponding numerical flux of particle distribution function can be evalu-
ated via

Fi+1/2, j = f i+1/2, jni+1/2 · u j, (25)

where ni+1/2 is the unit normal vector of cell interface and u j denotes discrete velocity at j-th quadrature point.

4.3. Collision term

The neural network-enhanced collision term inside each cell is formulated as

Q (f i, j) = νi(Mi, j − f i, j) + NNθ (Mi, j − f i, j). (26)

The collision frequency is defined as,

ν = p/μ, (27)

where p is pressure., and μ is viscosity coefficient. It follows the variational hard-sphere (VHS) model’s rule,

μ = μref

(
T

Tref

)ω

, (28)

where μref and Tref are the viscosity and temperature in the reference state, and ω is the viscosity index.
6

T. Xiao and M. Frank Journal of Computational Physics 443 (2021) 110521
Table 1
Computational setup for training set production in homogeneous relaxation.

t
t u v w Nu Nv Nw

[0,2] 0.2 [−5,5] [−5,5] [−5,5] 80 28 28
Quadrature Kn Pr μref α ω Integrator
rectangular 1 2/3 0.554 1.0 0.5 Tsitouras’ 5/4

Once the interface fluxes are defined, the solution algorithm in Eq. (21) becomes

f n+1
i, j = f n

i, j + 1

�i

tn+1ˆ

tn

n f∑
r=1

Fr
Srdt +
tn+1ˆ

tn

[
νi(Mi, j − f i, j) + NNθ (Mi, j − f i, j)

]
dt. (29)

The most straightforward time-integral algorithm for the above equation is the forward Euler method. If the time step is
much larger than mean collision time τ = 1/ν , or more accurate solutions are requested, higher-order methods, e.g. the
Forward Euler method, the midpoint rule, the Rosenbrock approach [55], and Tsitouras’s 5/4 Runge-Kutta method [56], can
be employed to ensure a balance of accuracy and stability.

5. Numerical experiments

In this section, we will introduce the detailed methodology for conducting numerical experiments and the solutions to
validate the current model and scheme. Both spatially uniform and non-uniform Boltzmann equations will be considered.
For convenience, dimensionless variables will be introduced in the simulations,

x̃ = x

L0
, ρ̃ = ρ

ρ0
, T̃ = T

T0
, ũ = u

(2RT0)1/2
, Ũ = U

(2RT0)1/2
,

f̃ = f

ρ0(2RT0)3/2
, T̃ = T

ρ0(2RT0)
, q̃ = q

ρ0(2RT0)3/2
,

where R is the gas constant, T is stress tensor, and q is heat flux. The denominators with subscript zero are characteristic
variables in the reference state. For brevity, the tilde notation for dimensionless variables will be removed henceforth.

5.1. Homogeneous relaxation

First we consider the homogeneous relaxation of particles from an initial non-equilibrium distribution, i.e.

f (t = 0, u, v, w) = 1

2π2/3
(exp(−(u − 0.99)2) + exp(−(u + 0.99)2))exp(−v2)exp(−w2).

The training set is produced by the fast spectral method, which consists a series of discrete particle distribution functions
from every time step
t = 0.2. The detailed computational setup can be found in Table 1. Notice that the viscosity coefficient
in the reference state is connected with the Knudsen number,

μ0 = 5(α + 1)(α + 2)
√

π

4α(5 − 2ω)(7 − 2ω)
Kn,

where {α, ω} are parameters for the VHS model.
As the initial particle distribution along y and z is set as equilibrium, we are mostly concerned about the evolution in x

direction. We employ neural network to conduct dimension reduction, and the corresponding universal Boltzmann equation
writes,

ht(t, u) = ν(M− h) + NNθ (M− h).

The reduced distribution function here is defined as

h(t, u) =
¨

f (t, u, v, w)dvdw,

and the training data is projected into one-dimensional profiles in the same way. The neural network chain consists of two
hidden dense layers with (Nu × 16) neurons each, and the tanh plays as the activation function. Tsitouras’ 5/4 Runge-Kutta
method [56] is again used to solve the UBE and produces the data hθ at same instants as training set, and the loss function
is evaluated through mean squared error, i.e.
7

T. Xiao and M. Frank Journal of Computational Physics 443 (2021) 110521
Fig. 2. Schematic of thermal creep problem.

Fig. 3. Loss functions of universal Boltzmann equation versus iterations under different optimizers in the homogeneous relaxation problem. (For interpreta-
tion of the colors in the figure(s), the reader is referred to the web version of this article.)

L(θ) =
∑
j,n

(hθ − htrain)2(tn, u j) + ζ

2∑
l=1

||θ(l)||2,

where the regularization parameter takes ζ = 10−6.
The variation of loss function with respect to iterations in both training and test sets is shown in Fig. 3. Some com-

monly used optimizers are compared for the training of UBE. As a second-order gradient method, L-BFGS enjoys the fastest
convergence speed in such a supervised learning problem with relatively small amounts of data. Thanks to the usage of
gradient momentum and the self-adaptive learning rate, ADAM provides a robust and fast gradient descent process. Simple
momentum-based methods, i.e. Nesterov and RMSProp, however, provide a much slower convergence due to the prefixed
total learning rate. The hybrid Nesterov and ADAM algorithm, i.e. NADAM, presents equivalent convergence speed as L-BFGS
in the beginning, but suffers from some fluctuations as the training proceeds.

Once the training process finishes, we get the universal differential equation we need. Since we are modeling continuous
dynamics, instead of keeping the same approaches for producing training set, we can choose different algorithms with
respect to accuracy requirement. For instance, now we use the midpoint rule to solve the obtained UBE. Fig. 4 presents the
particle distribution profile along u direction at the same time instants as training set. Different from the time-series training
used in the UBE, we also plot the results with conventional discrete training strategy based on the same initial condition.
As can be seen, significant differences exist between Boltzmann and BGK solutions. Thanks to the continuous time-series
training, the current UBE holds much better training performance than the direct training of Boltzmann integral on discrete
time instants. With the mechanical part being BGK model, the UBE provides perfectly equivalent solutions as fast spectral
method (FSM) of Boltzmann equation at a much lower computational cost. Table 2 shows the detailed memory usage,
allocation numbers, and running time of the two methods for solving the right-hand side of the Boltzmann equation with
the midpoint rule. As can be seen, the current method saves 97% memory load and achieves 33 times faster computational
efficiency.

An effective neural network as function approximator should be able to conduct interpolation and extrapolation beyond
the training set. To test the performance of trained UBE, we recalculate the time-series solution within t ∈ [0, 9] and save
8

T. Xiao and M. Frank Journal of Computational Physics 443 (2021) 110521
Fig. 4. Particle distribution functions at different time instants within the training set of the homogeneous relaxation problem.

Table 2
Computational cost for solving the right-hand side of the Boltzmann equation with midpoint rule in homogeneous
relaxation.

MEM nallocs tmin tmedian tmean tmax nsamples

UBE 242.25 MB 5638 89.30 ms 142.43 ms 144.87 ms 221.96 ms 35
FSM 7.42 GB 194610 4.71 s 4.83 s 4.83 s 4.94 s 2

at every
t = 0.1. Obviously, there exist solutions off and beyond the original training data. Fig. 5 presents the particle
distribution profile along u direction at the offset data points, and Fig. 6 shows the profile at extrapolation points.

The benchmark solutions are provided by FSM with the same computational setup. As is shown, the UBE provides
equivalent solutions as FSM at interpolated and extrapolated time instants. Fig. 7 plots the particle distribution function
and collision term in the phase space throughout the evolution. Fig. 8 demonstrates that the entropy inequality is satisfied
precisely by the UBE. This case serves as a benchmark validation of the universal model and numerical scheme to provide
Boltzmann solutions efficiently.

5.2. Normal shock structure

Then let us turn to spatially inhomogeneous case. The normal shock wave structure is an ideal case to validate theoretical
modeling and numerical algorithm in case of highly dissipative flow organizations and strong non-equilibrium effects. Built
on the reference frame of shock wave, the stationary upstream and downstream status can be described via the well-known
Rankine-Hugoniot relation,

ρ+
ρ

= (γ + 1)Ma2

2
,

− (γ − 1)Ma + 2

9

T. Xiao and M. Frank Journal of Computational Physics 443 (2021) 110521
Fig. 5. Particle distribution functions at interpolating time instants outside the training set of the homogeneous relaxation problem.

Fig. 6. Particle distribution functions at extrapolating time instants outside the training set of the homogeneous relaxation problem.

U+
U−

= (γ − 1)Ma2 + 2

(γ + 1)Ma2
,

T+
T−

= ((γ − 1)Ma2 + 2)(2γ Ma2 − γ + 1)

(γ + 1)2Ma2
,

where γ is the ratio of specific heat. The upstream and downstream density, velocity and temperature are denoted with
{ρ−, U−, T−} and {ρ+, U+, T+}. The computational setup for this case is presented in Table 3.
10

T. Xiao and M. Frank Journal of Computational Physics 443 (2021) 110521
Fig. 7. Particle distribution functions and collision terms over phase space {t, u} in the homogeneous relaxation problem.

Fig. 8. Time evolution of entropy in the homogeneous relaxation problem.

Table 3
Computational setup in normal shock structure.

x Nx u Nu Quadrature Kn Pr

[−25,25] 80 [−5,5] 80 rectangle 1 2/3
μref α ω CFL Integral Layer Optimizer
0.554 1.0 0.5 0.7 Midpoint Dense ADAM

We are only concerned about the one-dimensional profile of flow variables. Similar as the homogeneous relaxation
problem, two reduced distribution functions can be introduced to conduct dimension reduction,

h(t, x, u) =
¨

f (t, x, u, v, w)dvdw,

b(t, x, u) =
¨

(v2 + w2) f (t, x, u, v, w)dvdw,

and the corresponding universal Boltzmann equations become,

∂h

∂t
+ u

∂h

∂x
= ν(Mh − h) + NNθ (Mh − h),

∂b

∂t
+ u

∂b

∂x
= ν(Mb − h) + NNθ (Mb − h).

The neural network chain consists of an input layer which accepts h and b with (Nu ×2) neurons, three hidden dense layers
with (Nu × 2 × 16) neurons each, tanh as the activation function and the output layer that is of the same shape with input.
For the current steady-state problem, BGK equation is employed first to evolve the flow field from initial jump condition,
from which we extract particle distribution functions at different time instants. The fast spectral method with midpoint rule
11

T. Xiao and M. Frank Journal of Computational Physics 443 (2021) 110521
Fig. 9. Training process and solution algorithm of the universal Boltzmann equation.

Fig. 10. Gas density, velocity and temperature profiles at different Mach numbers in the normal shock wave problem.

is employed to solve the Boltzmann collision integral and generates training data in time series. In this case five tracing
solution points are recorded within each time step. Thereafter, the same algorithm is used to solve the UBE and produces
data points at the same time instants as training set. The loss function is evaluated through mean squared error,

L(θ) =
∑
i, j,n

(hθ − htrain)2(tn, xi, u j) +
∑
i, j,n

(bθ − btrain)2(tn, xi, u j) + ζ

3∑
l=1

||θ(l)||2.

In the numerical simulation, the training and solving processes are handled in a coupled way. First, the training set consists
of 100 equally distributed data set (extracted every 20 time stepping and covers the entire physical domain). After the
training process, we utilize the UBE solver to continue the simulation. However, if the residuals of flow variables keep
increasing within a successive 20 time steps, we downgrade the generalization performance of the current neural network.
To overcome the overfitting of existing training data, the particle distribution functions at current time step will be extracted
and added into training set to conduct parameter retraining. The detailed training approach and solution algorithm are
illustrated in Fig. 9.

Fig. 10 presents the profiles of gas density, velocity and temperature along x direction, and Fig. 11 provides the distribu-
tions of stress P xx and heat flux q. As is shown, the current UBE provides equivalent solutions as reference results. Fig. 12
presents the contours of reduced particle distribution functions h and collision term ν(Mh − h) in the convergent state.
12

T. Xiao and M. Frank Journal of Computational Physics 443 (2021) 110521
Fig. 11. Stress and heat flux at different Mach numbers in the normal shock wave problem.

Fig. 12. Contours of reduced distribution functions and collision terms at Ma = 3 in the normal shock structure problem.

In spite of the similar patterns of particle distributions, obvious difference between UBE and BGK solution can be observed
from the distribution of collision terms over the phase space {x, u}. Table 4 lists the detailed computational cost for evalu-
ating collision term inside each cell, and Table 5 presents the corresponding mean computational time with different ODE
solvers. Due to the data transmission through neurons, the UBE is far more efficient than the fast spectral method (FSM) for
Boltzmann integral from higher dimensions in phase space.
13

T. Xiao and M. Frank Journal of Computational Physics 443 (2021) 110521
Table 4
Computational cost for evaluating the right-hand side of the Boltzmann equation in the normal shock structure
problem.

MEM nallocs tmin tmedian tmean tmax nsamples

UBE 4.78 MB 25 412.69 μs 502.26 μs 508.88 μs 547.00 μs 8008
FSM 214.42 MB 1839 66.14 ms 71.82 ms 71.55 ms 73.00 ms 170

Table 5
Mean computational time for solving the right-hand side of the Boltzmann equation with different solvers in the
normal shock structure problem.

Euler Midpoint BS3 RK4 Tsit5

UBE 3.39 ms 15.73 ms 17.66 ms 37.29 ms 37.08 ms
FSM 211.04 ms 369.22 ms 443.07 ms 669.31 ms 669.71 ms

Table 6
Computational setup of lid-driven cavity.

x y Nx N y u v Nu

[0,1] [0,1] 45 45 [−5,5] [−5,5] 24
Nv Quadrature Kn Pr μref α ω
24 Rectangular 0.075 0.67 0.042 1.0 0.5
CFL Integrator Boundary Layer Activation Optimizer
0.8 Midpoint Maxwell Dense tanh ADAM

5.3. Lid-driven cavity

We then test the performance of current method with multi-dimensional geometry. The lid-driven cavity is employed
for the numerical experiment. The rectangular domain is enclosed by four solid walls with equal temperature T w = 1. The
upper wall moves in the tangent direction with Vw = [0.15, 0]T , and the rest three walls stay still. Maxwell’s diffusive
boundary is adopted to all the walls. The initial particle distribution function is set as Maxwellian corresponding to the
uniform fluid, i.e.,⎡

⎢⎢⎣
ρ
U
V
T

⎤
⎥⎥⎦

t=0

=

⎡
⎢⎢⎣

1
0
0
1

⎤
⎥⎥⎦ .

Here we are concerned about two-dimensional distributions of flow variables, and thus the reduced distribution function
is introduced as

h(t, x, u, v) =
¨

f (t, x, u, v, w)dw,

and the corresponding universal Boltzmann equations become,

∂h

∂t
+ u

∂h

∂x
+ v

∂h

∂ y
= ν(Mh − h) + NNθ (Mh − h).

The neural network chain consists of an input layer which accepts h with (Nu × Nv) neurons, two hidden dense layers with
(Nu × Nv × 8) neurons each, and an output layer that is of the same shape with input. The detailed computational setup is
provided in Table 6.

Similar as the shock wave problem, the BGK equation is employed first to evolve the flow field from initial homogeneity.
The particle distribution functions at different time instants are extracted as the initial status of the Boltzmann collision
integral, which produce time-series dataset with the midpoint rule. The loss function is the same as that described in the
section 5.2. The unified solution algorithm to solve the UBE and to append the training set follows the diagram in Fig. 9.

Fig. 13 presents the contours of U -velocity with streamlines and of temperature with heat flux vectors. As illustrated in
[57], the anti-Fourier’s heat flux driven by stress is clearly identified. Fig. 14 shows the velocity profiles along the vertical
and horizontal central lines of the cavity. The DSMC solutions with 60 × 60 physical mesh are plotted as benchmark. The
quantitative comparison demonstrates that the current approach is able to provide equivalent DSMC solutions. Fig. 15–17
presents the collision operators from the UBE and the pure BGK term. Although the difference is not as great as inner shock
wave, the corrective effect of the neural network is clearly identified, which provide a Prandtl number fix at molecular
level for the BGK system. Table 7 lists the detailed computational cost for evaluating collision term inside each cell. Due
to the massive data transmission through neurons, the UBE calculation costs few more resources than soving the Shakhov
14

T. Xiao and M. Frank Journal of Computational Physics 443 (2021) 110521
Fig. 13. Contours of U -velocity with streamlines and temperature with heat flux vectors inside the cavity.

Fig. 14. Velocity profiles along vertical and horizontal central lines inside the cavity.

Fig. 15. Contours of collision terms at the center point of cavity.

term directly, but is still much more efficient than the fast spectral method (FSM) for the Boltzmann integral from higher
dimensions in phase space. Also, with the direct matrix manipulation possessed in neural network, fewer allocations, e.g.
the collision frequency, are needed to evaluate collision terms.
15

T. Xiao and M. Frank Journal of Computational Physics 443 (2021) 110521
Fig. 16. Contours of collision terms at the topleft point of cavity.

Fig. 17. Contours of collision terms at the topright point of cavity.

Table 7
Computational cost for evaluating the right-hand side of the Boltzmann equation in the lid-driven cavity problem.

MEM nallocs tmin tmedian tmean tmax nsamples

UBE 52.72 KB 24 459.22 μs 524.73 μs 710.88 μs 4.97 ms 6977
Shakhov 40.97 KB 62 13.17 μs 15.00 μs 16.59 μs 176.58 μs 10000
FSM 68.8 MB 212572 27.83 ms 28.21 ms 30.32 ms 35.08 ms 166

5.4. Thermal creep

The last test case is the thermal creep problem. It is a typical non-equilibrium flow of rarefied gas induced by temper-
ature gradient. In this case, we follow the setup given in [58]. A sealed two-dimensional channel is enclosed by four solid
walls. The left and right ends hold different temperatures as T L = 273K and T R = 573K , and the upper and lower walls
show a linear temperature distribution in between. The initial pressure is equal to a unit of atmospheric pressure, and thus
the molecular mean free path is � = 64nm. The initial temperature of gas is set to be equal to the wall temperature at the
same horizontal location. The particle distribution functions are the Maxwellian with respect to local macroscopic variables.
We consider different channel widths and the reference Knudsen numbers change correspondingly. The schematic of the
problem is shown in Fig. 2, and the detailed computational setup can be found in Table 8.

Similar as the previous problem, the BGK equation is employed first to evolve the flow field from initial status. The par-
ticle distribution functions at different time instants are extracted and play as the initial value of homogeneous Boltzmann
equation. The explicit Euler method is employed to generate the time-series dataset from the homogeneous Boltzmann
equation. The loss function is the same as that described in the section 5.2. The unified solution algorithm to generate the
training set and to solve the UBE follows the diagram in Fig. 9
16

T. Xiao and M. Frank Journal of Computational Physics 443 (2021) 110521
Table 8
Computational setup of thermal creep problem.

x y Nx N y u v

[0,5] [0,1] 200 40 [−5,5] [−5,5]
Quadrature Kn Pr α ω CFL
Nonuniform [0.064,10] 0.67 1.0 0.5 0.8
Integrator Boundary Layer Activation Optimizer
Euler Maxwell Dense tanh ADAM

Fig. 18. Contours of temperature with streamlines in the thermal creep problem.

Fig. 19. Pressure distributions along the horizontal center line in the thermal creep problem.

Fig. 18 presents the contours of temperature with streamlines inside the channel at different reference Knudsen numbers
with Kn = 0.064, 0.64, 3.2. The algebraic non-uniform numerical quadrature [59] with 48, 64, and 96 points is used in u and
v directions respectively. As can be seen, with different rarefaction, the flow patterns change dramatically. Fig. 19 provides
the pressure distribution along the horizontal center line of the channel. The DSMC solutions with the same geometry
resolution are plotted as reference. As is shown, the current approach provides the equivalent and noise-free solutions as
DSMC. Fig. 20 draws the corresponding particle distribution functions along the horizontal center line, and Fig. 21 shows
the collision operators from the UBE and the pure BGK term. The corrective effect from the neural network can be clearly
seen, especially in the highly rarefied regime.
17

T. Xiao and M. Frank Journal of Computational Physics 443 (2021) 110521
Fig. 20. Particle distribution functions along the horizontal center line of channel at different reference Knudsen numbers.

To further verify the current setup of physical mesh and numerical quadrature, we simulate the thermal creep case in
[59] as well. The computational setup remains consistent, except that we now simulate the Argon gas with the right-hand
temperature being twice as high as the left end with T R = 2T L . The initial uniform gas holds equal temperature as the left
wall. Fig. 22 and 23 compare the U -velocity profiles along horizontal and vertical central lines at Kn = 0.08 and Kn = 10.
The grid-convergence test in highly rarefied gaseous flow illustrates that the current quadrature setups are reasonable.
18

T. Xiao and M. Frank Journal of Computational Physics 443 (2021) 110521
Fig. 21. Collision operators along the horizontal center line of channel at different reference Knudsen numbers.

6. Conclusion

Deep learning offers another possibility for the future development of scientific modeling and simulation. In this paper,
we hybridize mechanical and neural modelings in the context of gas dynamics and present a neural network-enhanced uni-
versal Boltzmann equation (UBE). The complicated fivefold Boltzmann integral is replaced by the neural network surrogation,
which forms a differentiable framework that can be trained and solved via source-to-source automatic differentiation and
various differential equation solvers. The proposed neural differential equation maintains a well balance of interpretability
from deep physical insight and flexibility from deep learning techniques. The asymptotic limit of the UBE in the hydrody-
namic limit is preserved independent of the neural network parameters. The solution algorithm for the UBE is provided,
and numerical experiments of both spatially uniform and non-uniform cases are presented to validate the current modeling
and simulation approach. The universal Boltzmann equation method enjoys considerable potential to be further extended
to complex systems with nonelastic collisions [60], real-gas effects [61], chemical reactions [62], uncertainty quantification
[63,64], etc.
19

T. Xiao and M. Frank Journal of Computational Physics 443 (2021) 110521
Fig. 22. Velocity profiles along vertical and horizontal central lines inside the channel at Kn = 0.08 with 48 quadrature points.

Fig. 23. Velocity profiles along vertical and horizontal central lines inside the channel at Kn = 10 with grid-convergent quadrature settings.

CRediT authorship contribution statement

Tianbai Xiao: Conceptualization, Formal analysis, Investigation, Methodology, Project administration, Software, Visualiza-
tion, Writing – original draft, Writing – review & editing. Martin Frank: Conceptualization, Formal analysis, Methodology,
Project administration, Resources, Supervision, Writing – original draft, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgement

We acknowledge the help from Dr. Christopher Rackauckas in the open-source community of scientific machine learn-
ing, and the fruitful discussion with Steffen Schotthöfer. The current research is funded by the Alexander von Humboldt
Foundation (Ref. 3.5-CHN-1210132-HFST-P).

References

[1] Mark Nixon, Alberto Aguado, Feature Extraction and Image Processing for Computer Vision, Academic press, 2019.
[2] K.R. Chowdhary, Natural language processing, in: Fundamentals of Artificial Intelligence, Springer, 2020, pp. 603–649.
[3] Eric Mjolsness, Dennis DeCoste, Machine learning for science: state of the art and future prospects, Science 293 (5537) (2001) 2051–2055.
[4] E. Isaac Lagaris, Aristidis Likas, Dimitrios I. Fotiadis, Artificial neural networks for solving ordinary and partial differential equations, IEEE Trans. Neural

Netw. 9 (5) (1998) 987–1000.
[5] Justin Sirignano, Konstantinos Spiliopoulos Dgm, A deep learning algorithm for solving partial differential equations, J. Comput. Phys. 375 (2018)

1339–1364.
20

http://refhub.elsevier.com/S0021-9991(21)00416-2/bib2F4E73FBC799FA0A3B111A6216D38880s1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bib111830872C2C6FE5141E569C46F71D75s1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bibC521D6DDE8F2DFCC093AF87BA7DD0C3Bs1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bib3BAB71061A41AAFC901D883266809035s1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bib3BAB71061A41AAFC901D883266809035s1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bib8B90E81BB28AC40F01D08933FA24746Es1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bib8B90E81BB28AC40F01D08933FA24746Es1

T. Xiao and M. Frank Journal of Computational Physics 443 (2021) 110521
[6] E. Weinan, Bing Yu, The deep Ritz method: a deep learning-based numerical algorithm for solving variational problems, Commun. Math. Stat. 6 (1)
(2018) 1–12.

[7] Jens Berg, Kaj Nyström, A unified deep artificial neural network approach to partial differential equations in complex geometries, Neurocomputing 317
(2018) 28–41.

[8] Jiequn Han, Arnulf Jentzen, E. Weinan, Solving high-dimensional partial differential equations using deep learning, Proc. Natl. Acad. Sci. USA 115 (34)
(2018) 8505–8510.

[9] Zeyu Liu, Yantao Yang, Qingdong Cai, Neural network as a function approximator and its application in solving differential equations, Appl. Math. Mech.
40 (2) (2019) 237–248.

[10] Maziar Raissi, Paris Perdikaris, George E. Karniadakis, Physics-informed neural networks: a deep learning framework for solving forward and inverse
problems involving nonlinear partial differential equations, J. Comput. Phys. 378 (2019) 686–707.

[11] Luning Sun, Han Gao, Shaowu Pan, Jian-Xun Wang, Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation
data, Comput. Methods Appl. Mech. Eng. 361 (2020) 112732.

[12] Xiaowei Jin, Shengze Cai, Hui Li, George Em Karniadakis, NSFnets (Navier-Stokes flow nets): physics-informed neural networks for the incompressible
Navier-Stokes equations, preprint, arXiv:2003 .06496, 2020.

[13] Zhiping Mao, Ameya D. Jagtap, George Em Karniadakis, Physics-informed neural networks for high-speed flows, Comput. Methods Appl. Mech. Eng.
360 (2020) 112789.

[14] Hui Xu, Wei Zhang, Yong Wang, Explore missing flow dynamics by physics-informed deep learning: the parameterised governing systems, preprint,
arXiv:2008 .12266, 2020.

[15] Francisco Sahli Costabal, Yibo Yang, Paris Perdikaris, Daniel E. Hurtado, Ellen Kuhl, Physics-informed neural networks for cardiac activation mapping,
Front. Phys. 8 (2020) 42.

[16] Georgios Kissas, Yibo Yang, Eileen Hwuang, Walter R. Witschey, John A. Detre, Paris Perdikaris, Machine learning in cardiovascular flows modeling:
predicting arterial blood pressure from non-invasive 4d flow MRI data using physics-informed neural networks, Comput. Methods Appl. Mech. Eng.
358 (2020) 112623.

[17] Zhiwei Fang, Justin Zhan, Deep physical informed neural networks for metamaterial design, IEEE Access 8 (2019) 24506–24513.
[18] Dehao Liu, Yan Wang, Multi-fidelity physics-constrained neural network and its application in materials modeling, J. Mech. Des. 141 (12) (2019).
[19] Yuyao Chen, Lu Lu, George Em Karniadakis, Luca Dal Negro, Physics-informed neural networks for inverse problems in nano-optics and metamaterials,

Opt. Express 28 (8) (2020) 11618–11633.
[20] Yibo Yang, Paris Perdikaris, Adversarial uncertainty quantification in physics-informed neural networks, J. Comput. Phys. 394 (2019) 136–152.
[21] Yinhao Zhu, Nicholas Zabaras, Phaedon-Stelios Koutsourelakis, Paris Perdikaris, Physics-constrained deep learning for high-dimensional surrogate mod-

eling and uncertainty quantification without labeled data, J. Comput. Phys. 394 (2019) 56–81.
[22] Yuehaw Khoo, Lexing Ying, Switchnet: a neural network model for forward and inverse scattering problems, SIAM J. Sci. Comput. 41 (5) (2019)

A3182–A3201.
[23] Yuwei Fan, Lin Lin, Lexing Ying, Leonardo Zepeda-Núnez, A multiscale neural network based on hierarchical matrices, Multiscale Model. Simul. 17 (4)

(2019) 1189–1213.
[24] Yingzhou Li, Jianfeng Lu, Anqi Mao, Variational training of neural network approximations of solution maps for physical models, J. Comput. Phys. 409

(2020) 109338.
[25] Jiequn Han, Linfeng Zhang, Roberto Car, et al., Deep potential: a general representation of a many-body potential energy surface, preprint, arXiv:

1707.01478, 2017.
[26] Maziar Raissi, Alireza Yazdani, George Em Karniadakis, Hidden fluid mechanics: learning velocity and pressure fields from flow visualizations, Science

367 (6481) (2020) 1026–1030.
[27] Pat Langley, Data-driven discovery of physical laws, Cogn. Sci. 5 (1) (1981) 31–54.
[28] Samuel H. Rudy, Steven L. Brunton, Joshua L. Proctor, J. Nathan Kutz, Data-driven discovery of partial differential equations, Sci. Adv. 3 (4) (2017)

e1602614.
[29] Maziar Raissi, Paris Perdikaris, George Em Karniadakis, Multistep neural networks for data-driven discovery of nonlinear dynamical systems, preprint,

arXiv:1801.01236, 2018.
[30] Jun Zhang, Wenjun Ma, Data-driven discovery of governing equations for fluid dynamics based on molecular simulation, J. Fluid Mech. 892 (2020).
[31] Steven L. Brunton, Joshua L. Proctor, J. Nathan Kutz, Discovering governing equations from data by sparse identification of nonlinear dynamical systems,

Proc. Natl. Acad. Sci. USA 113 (15) (2016) 3932–3937.
[32] Struchtrup Henning, Macroscopic transport equations for rarefied gas flows, in: Macroscopic Transport Equations for Rarefied Gas Flows, Springer, 2005,

pp. 145–160.
[33] Clément Mouhot, Lorenzo Pareschi, Fast algorithms for computing the Boltzmann collision operator, Math. Comput. 75 (256) (2006) 1833–1852.
[34] Tianbai Xiao, Kun Xu, Qingdong Cai, A unified gas-kinetic scheme for multiscale and multicomponent flow transport, Appl. Math. Mech. 40 (3) (2019)

355–372.
[35] Balázs Csanád Csáji, et al., Approximation with artificial neural networks, Faculty of Sciences, Etvs Lornd University, Hungary 24(48), 7, 2001.
[36] Christopher Rackauckas, Yingbo Ma, Julius Martensen, Collin Warner, Kirill Zubov, Rohit Supekar, Dominic Skinner, Ali Ramadhan, Universal differential

equations for scientific machine learning, preprint, arXiv:2001.04385, 2020.
[37] Carlo Cercignani, The Boltzmann Equation and Its Applications, Springer, 1988.
[38] Prabhu Lal Bhatnagar, Eugene P. Gross, Max Krook, A model for collision processes in gases, I: small amplitude processes in charged and neutral

one-component systems, Phys. Rev. 94 (3) (1954) 511.
[39] E.M. Shakhov, Generalization of the Krook kinetic relaxation equation, Fluid Dyn. 3 (5) (1968) 95–96.
[40] Ricky T.Q. Chen, Yulia Rubanova, Jesse Bettencourt, David K. Duvenaud, Neural ordinary differential equations, in: Advances in Neural Information

Processing Systems, 2018, pp. 6571–6583.
[41] Lars Ruthotto, Eldad Haber, Deep neural networks motivated by partial differential equations, J. Math. Imaging Vis. (2019) 1–13.
[42] Sydney Chapman, Thomas George Cowling, The Mathematical Theory of Non-Uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal

Conduction and Diffusion in Gases, Cambridge University Press, 1970.
[43] Tianbai Xiao, Chang Liu, Kun Xu, Qingdong Cai, A velocity-space adaptive unified gas kinetic scheme for continuum and rarefied flows, J. Comput. Phys.

(2020) 109535.
[44] Tianbai Xiao, Kun Xu, Qingdong Cai, Tiezheng Qian, An investigation of non-equilibrium heat transport in a gas system under external force field, Int.

J. Heat Mass Transf. 126 (2018) 362–379.
[45] Tianbai Xiao, Qingdong Cai, Kun Xu, A well-balanced unified gas-kinetic scheme for multiscale flow transport under gravitational field, J. Comput. Phys.

332 (2017) 475–491.
[46] Mike Innes, Alan Edelman, Keno Fischer, Christopher Rackauckas, Elliot Saba, Viral B. Shah, Will Tebbutt, A differentiable programming system to bridge

machine learning and scientific computing, CoRR, arXiv:1907.07587 [abs], 2019.
21

http://refhub.elsevier.com/S0021-9991(21)00416-2/bib67F4470D38CD48C122E6F9FB6BD2BE2Bs1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bib67F4470D38CD48C122E6F9FB6BD2BE2Bs1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bibB81B07E1ABB63F522FD16E14210BE6B7s1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bibB81B07E1ABB63F522FD16E14210BE6B7s1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bib8CA40B5FB63ACBACC3522FE830F81DF5s1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bib8CA40B5FB63ACBACC3522FE830F81DF5s1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bib47E29D0CA92B82C241D40E24B7EE206Bs1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bib47E29D0CA92B82C241D40E24B7EE206Bs1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bib53EF7BEEFFBCC434AC4215FA1276D943s1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bib53EF7BEEFFBCC434AC4215FA1276D943s1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bib18CC3FD06F9626CCA249F5214AC12E03s1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bib18CC3FD06F9626CCA249F5214AC12E03s1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bibAF07C5C3AEF90195B26FE5A1E5E519EEs1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bibAF07C5C3AEF90195B26FE5A1E5E519EEs1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bibB9C5E91ADF5AE9A40614D2E0BA926475s1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bibB9C5E91ADF5AE9A40614D2E0BA926475s1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bib5956F047CC916FF53D52CCCF054E24E1s1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bib5956F047CC916FF53D52CCCF054E24E1s1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bib07531D95F15C195EBEC2B4184AB4E720s1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bib07531D95F15C195EBEC2B4184AB4E720s1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bib0105BE1901C56081FD9250FB5273AA89s1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bib0105BE1901C56081FD9250FB5273AA89s1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bib0105BE1901C56081FD9250FB5273AA89s1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bib9E1675CE61BB3489E64802F7EFBA1872s1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bib1BE1D2C02BC69A9C291C9743C1334129s1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bibE9BD9A0EDED4B60701DF2753FF7438D0s1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bibE9BD9A0EDED4B60701DF2753FF7438D0s1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bib2BAC8AAECE53DDD9A1A96B3389B6EDB5s1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bibA9CEDAFF449F99AF2ADC9EF8243EED8Es1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bibA9CEDAFF449F99AF2ADC9EF8243EED8Es1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bib659B5A388D5282F74FA24FF2C333B13Ds1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bib659B5A388D5282F74FA24FF2C333B13Ds1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bibF65BD9909395F8FCD6819BFBF26FC468s1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bibF65BD9909395F8FCD6819BFBF26FC468s1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bibD2167CB645D672310311E85349D88B2Ds1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bibD2167CB645D672310311E85349D88B2Ds1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bib34E5B37AC2F52CD1CD0224DD3426B8E7s1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bib34E5B37AC2F52CD1CD0224DD3426B8E7s1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bib2FD7A5A76418B7DA6CCBFD0A1C2A7D81s1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bib2FD7A5A76418B7DA6CCBFD0A1C2A7D81s1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bibC78F8BDCBFBDCB4B7AA0581DEBE44FF9s1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bibE0133828B67F5593D7CF05E6B4894F9Fs1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bibE0133828B67F5593D7CF05E6B4894F9Fs1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bibEB92122173254BACDD0406F7261EDC76s1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bibEB92122173254BACDD0406F7261EDC76s1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bib50594A9CF84B93D2345B33950ECDE740s1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bib79BA2CB7E9FE73186B887E1C6A43315Bs1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bib79BA2CB7E9FE73186B887E1C6A43315Bs1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bibF4FEF1A5A7254DA71D916BAB34556229s1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bibF4FEF1A5A7254DA71D916BAB34556229s1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bibEBABE857593B725B6833EC736815F4C2s1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bibE54C78E607A0644E23C2B67B3553CDAEs1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bibE54C78E607A0644E23C2B67B3553CDAEs1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bib83C94DE88C711F7331E6B7F37F866BF2s1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bibF7892B83464F1E93301DFB335A7F9BC5s1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bibF7892B83464F1E93301DFB335A7F9BC5s1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bib977836068F009353019704BD18F7F59Ds1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bib534521E2C33D70310023096B3EE27E3Es1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bib534521E2C33D70310023096B3EE27E3Es1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bib981B30880BC69B8169235B11A9C8D5BDs1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bib75044DCECA97FD1B79C00596D122B9FBs1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bib75044DCECA97FD1B79C00596D122B9FBs1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bib99DAE1457EDA5D7758AA8F3CD879A8F0s1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bibD810A08C74AABA1FE6FCF2B89D57EA2Ds1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bibD810A08C74AABA1FE6FCF2B89D57EA2Ds1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bibA902923D2D2C17DADF614303E12BA76As1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bibA902923D2D2C17DADF614303E12BA76As1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bibBE6703942A8E47ABB5303A0D3CE7401Es1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bibBE6703942A8E47ABB5303A0D3CE7401Es1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bib4EE1403EA0080CF25F893D8A3356FBC3s1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bib4EE1403EA0080CF25F893D8A3356FBC3s1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bib253AF682386C7B56553C97C00FC5A952s1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bib253AF682386C7B56553C97C00FC5A952s1

T. Xiao and M. Frank Journal of Computational Physics 443 (2021) 110521
[47] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard,
et al., Tensorflow: a system for large-scale machine learning, in: 12th USENIX Symposium on Operating Systems Design and Implementation, OSDI 16,
2016, pp. 265–283.

[48] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, Adam Lerer,
Automatic Differentiation in Pytorch, 2017.

[49] Diederik P. Kingma, Jimmy Ba Adam, A method for stochastic optimization, preprint, arXiv:1412 .6980, 2014.
[50] Yu Nesterov, Efficiency of coordinate descent methods on huge-scale optimization problems, SIAM J. Optim. 22 (2) (2012) 341–362.
[51] Jorge Nocedal, Stephen Wright, Numerical Optimization, Springer Science & Business Media, 2006.
[52] Lei Wu, Craig White, Thomas J. Scanlon, Jason M. Reese, Yonghao Zhang, Deterministic numerical solutions of the Boltzmann equation using the fast

spectral method, J. Comput. Phys. 250 (2013) 27–52.
[53] Tianbai Xiao, Kinetic.jl: A portable finite volume toolbox for scientific and neural computing, J. Open Source Softw. 6 (1) (2021) 3060.
[54] Christopher Rackauckas, Qing Nie, DifferentialEquations. jl–a performant and feature-rich ecosystem for solving differential equations in Julia, J. Open

Res. Softw. 5 (1) (2017).
[55] Lawrence F. Shampine, Implementation of Rosenbrock methods, ACM Trans. Math. Softw. 8 (2) (1982) 93–113.
[56] Ch Tsitouras, I. Th Famelis, T.E. Simos, On modified Runge–Kutta trees and methods, Comput. Math. Appl. 62 (4) (2011) 2101–2111.
[57] John Benzi, Xiao-Jun Gu, David R. Emerson, Effects of incomplete surface accommodation on non-equilibrium heat transfer in cavity flow: a parallel

DSMC study, Comput. Fluids 45 (1) (2011) 197–201.
[58] Nathan D. Masters, Wenjing Ye, Octant flux splitting information preservation DSMC method for thermally driven flows, J. Comput. Phys. 226 (2) (2007)

2044–2062.
[59] Lei Wu, Jason M. Reese, Yonghao Zhang, Solving the Boltzmann equation deterministically by the fast spectral method: application to gas microflows,

J. Fluid Mech. 746 (2014) 53–84.
[60] V. Garzó, J.W. Dufty, Dense fluid transport for inelastic hard spheres, Phys. Rev. E 59 (5) (1999) 5895.
[61] Céline Baranger, Yann Dauvois, Gentien Marois, Jordane Mathé, Julien Mathiaud, Luc Mieussens, A BGK model for high temperature rarefied gas flows,

Eur. J. Mech. B, Fluids 80 (2020) 1–12.
[62] M. Groppi, G. Spiga, Kinetic approach to chemical reactions and inelastic transitions in a rarefied gas, J. Math. Chem. 26 (1–3) (1999) 197–219.
[63] Tianbai Xiao, Martin Frank, A stochastic kinetic scheme for multi-scale flow transport with uncertainty quantification, J. Comput. Phys. 437 (2021)

110337.
[64] Tianbai Xiao, Martin Frank, A stochastic kinetic scheme for multi-scale plasma transport with uncertainty quantification, J. Comput. Phys. 432 (2021)

110139.
22

http://refhub.elsevier.com/S0021-9991(21)00416-2/bib94AA557B3ED64B441F37A3CC8AA9D13Fs1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bib94AA557B3ED64B441F37A3CC8AA9D13Fs1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bib94AA557B3ED64B441F37A3CC8AA9D13Fs1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bib8610301B1FEDD2397477515B319EDF88s1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bib8610301B1FEDD2397477515B319EDF88s1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bibB88B8F9E9C5AF9DF750A673227029C8Fs1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bib804413E1DFBB6846102C92F6BBA54CA0s1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bib4DA0EF93AE8FDBAF2EC9720200F337BDs1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bib0B7AE17E7A76FBBAEF8C038EA37A64E1s1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bib0B7AE17E7A76FBBAEF8C038EA37A64E1s1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bib32DD58F4D9EECFADACA13885B66BB033s1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bib92B0BD480B610813B16EDA5260FDC551s1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bib92B0BD480B610813B16EDA5260FDC551s1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bibBF1425AE97F040F481C4904D74D9BBE9s1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bib2EEE14B48066D86FD144503DC2E2AAA7s1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bibAB65C6F31ACBE5859E4F00FDACE9A704s1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bibAB65C6F31ACBE5859E4F00FDACE9A704s1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bibC86A40FCC0F04FA4B872E944FCC0EA54s1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bibC86A40FCC0F04FA4B872E944FCC0EA54s1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bib60F381EE36E7AC82DF2A8736B3615D22s1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bib60F381EE36E7AC82DF2A8736B3615D22s1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bib70C6B5AEB5B1373B8E445AC318EDF572s1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bib04F68DD68DB9474A73F3E19DAB96616Cs1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bib04F68DD68DB9474A73F3E19DAB96616Cs1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bib4EE3EFEA3D9D20A151E97FFC54F3B545s1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bib4ED215E8517BBB3D99E90E3398CCBE41s1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bib4ED215E8517BBB3D99E90E3398CCBE41s1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bib3ABCAA2C2FB709DBA3670C26E7BBA8ECs1
http://refhub.elsevier.com/S0021-9991(21)00416-2/bib3ABCAA2C2FB709DBA3670C26E7BBA8ECs1

	Using neural networks to accelerate the solution of the Boltzmann equation
	1 Introduction
	2 Kinetic theory of gases
	3 Neural network-enhanced Boltzmann equation
	3.1 Idea
	3.2 Training strategy

	4 Solution algorithm
	4.1 Update algorithm
	4.2 Interface flux
	4.3 Collision term

	5 Numerical experiments
	5.1 Homogeneous relaxation
	5.2 Normal shock structure
	5.3 Lid-driven cavity
	5.4 Thermal creep

	6 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgement
	References

