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ABSTRACT
Considerable uncertainties can exist between the field solutions of coarse-grained fluid models
and the real-world flow physics. To study the emergence, propagation, and evolution of uncer-
tainties poses great opportunities and challenges to develop both sound theories and reliable
numerical methods. In this paper, we study the stochastic behaviour of multi-scale gaseous flows
from molecular to hydrodynamic level, especially focussing on the non-equilibrium effects. The
theoretical analysis is presented based on the gas kinetic model and its upscaling macroscopic sys-
tem with random inputs. A newly developed stochastic kinetic scheme is employed to conduct
numerical simulation of multi-scale and non-equilibrium flows. Different kinds of uncertainties are
involved in the gas evolutionary processes. New physical observations, such as the synchronous
travel pattern between mean fields and uncertainties, sensitivity of different orders of uncertain-
ties and the influence of boundary effects from continuum to rarefied regimes, are identified and
analysed.
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1. Introduction

The study of fluid dynamics is profoundly based
on a hierarchy of governing equations at different
scales. Counting a great many of fluid elements, the
Navier–Stokes equations are the first-principle mod-
elling of conservation laws from a macroscopic per-
spective. On the other hand, the Boltzmann equation
describes the gas dynamic system by tracking the evo-
lution of probabilistic distribution function of sin-
gle particle. Hilbert’s sixth problem (Hilbert 1902)
served as an intriguing beginning of trying to describe
the behaviour of interacting many-particle systems,
including the gas dynamic equations, across different
scales. It has been shown since then that some hydro-
dynamic equations can be derived as the asymptotic
limits of kinetic solutions (Grad 1949; Chapman and
Cowling 1970).

The theories of fluids can be understood as a coarse-
grained approximation of flow physics in the real
world. Therefore, considerable uncertainties may be
introduced due to the lack of comprehensive knowl-
edge or reduced degrees of freedom in the simplified
models. For instance, for the evaluation of collision
kernel in the kinetic equations, the phenomenologi-
cal model parameters often need to be calibrated by
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experiments, e.g. the Lennard-Jones molecule model
(Lennard-Jones 1924). As a result, the errors inherited
from experiments will inevitably influence the numer-
ical evolution of particle interactions at kinetic scale
that ought to be deterministic, as well as the repro-
duced constitutive relationships for the macroscopic
moment system.

To evaluate the quality of reduced model and assess
the effects of uncertainties on it falls into the topic
of uncertainty quantification (UQ). Two fundamen-
tal tasks can be related to UQ problems, i.e. the for-
ward and inverse problems. The former pertains to
uncertainty propagation from model inputs to out-
puts where input uncertainties have been charac-
terised stochastically. The latter aims at the parame-
terisation of uncertainties based on existing data sets.
In this paper, we will focus on the forward prob-
lem, on which there has been an increasing research
interest in computational fluid dynamics (CFD) in
recent literature. For example, Cacuci (2003) used
local sensitivity analysis and Saltelli, Tarantola, and
Chan (1999) adopted moment methods to solve flow
problems with relatively small uncertainties. Besides,
the spectral methods have been progressively used
given the development of polynomial chaos (PC)
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methods for the probabilistic representation of uncer-
tainty. Xiu and Karniadakis (2003) discussed the
application of generalised polynomial chaos (gPC)
to deal with uncertainties with moderate magni-
tude. Walters and Huyse (2002) analysed these dif-
ferent UQ strategies, and Najm (2009) addressed the
usage of PC with the application in compressible
flows.

The existing UQ applications of CFD mainly focus
on macroscopic fluid dynamic equations with stan-
dard stochastic settings. In the recent decades, rapid
development has beenmade inmulti-scale algorithms,
e.g. the continuum-rarefied hybrid methods (Bour-
gat, Tallec, and Tidriri 1995; Sun, Boyd, and Can-
dler 2004; Wijesinghe et al. 2004; Degond, Dimarco,
and Mieussens 2007) and the asymptotic-preserving
(AP) schemes (Lemou andMieussens 2008; Filbet and
Jin 2010; Xu and Huang 2010; Xiao, Cai, and Xu 2017;
Xiao 2021a), which has been proved to be an effi-
cient choice to seek the discrete Hilbert’s sixth path.
However, limited work has been conducted either on
the Boltzmann equation in a stochastic sense or on
the evolutionary process of uncertainties inmulti-scale
physics (Hu and Jin 2017;Dimarco and Pareschi 2019).
Given the nonlinear system including intermolecu-
lar collisions, initial inputs, fluid-surface interactions
and geometric complexities, uncertaintiesmay emerge
from molecular-level nature, develop upwards, affect
macroscopic collective behaviours and vice versa. To
study the emergence, propagation and evolution of
uncertainty poses great opportunities and challenges
to develop both sound theories and reliablemulti-scale
numerical algorithms.

In this paper, theoretical analysis and numerical
experiments will be performed to study the uncer-
tainty propagation inmulti-scale and non-equilibrium
flows quantitatively. For the theoretical analysis, the
kinetic theory of gases is reformulated with the
stochastic Galerkin (SG)method, which is an intrusive
methodology based on the gPC. The numerical exper-
iments are produced by the newly developed stochastic
kinetic scheme (SKS) (Xiao and Frank 2021a, 2021b),
which is an efficient method that hybridises intrusive
SG and collocation schemes. Several CFDapplications,
including homogeneous relaxation, normal shock
structure and lid-driven cavity, under the different
uncertainties from initial flow fields, boundary con-
ditions and intermolecular collision kernels, will be
studied in detail.

The rest of this paper is organised as follows.
Section 2 is a brief introduction of stochastic kinetic
theory and its asymptotic analysis. Section 3 presents a
brief introduction of the solution algorithm employed
for numerical simulations. Section 4 includes numeri-
cal experiments to present and analyse somenewphys-
ical observations related to uncertainty propagation in
fluid dynamics. The last section is the conclusion.

2. Stochastic Kinetic Theory of Gases

2.1. Boltzmann EquationWith Uncertainty

The Boltzmann equation depicts the time–space evo-
lution of particle probability distribution function. In
the absence of external force, it can be written as

∂tf + u · ∇xf = Q(f ), (1)

where f is the particle distribution function, x ∈ D ⊆
R
3 is the position in physical space, u ∈ R

3 is the
particle velocity andQ(f ) is the collision term. Consid-
ering the possible uncertainties in intermolecular col-
lisions, initial and boundary conditions, we can extend
the Boltzmann equation with stochastic settings and
reformulate the gas kinetic system, i.e.

∂tf + u · ∇xf = Q(f )(t, x, u, z),

t, x, u, z ∈ [0,T] × D × R
3 × I,

B(f )(t, x, u, z) = 0,

t, x, u, z ∈ [0,T] × ∂D × R
3 × I,

f (0, x, u, z) = f0(x, u, z), x, u, z ∈ D × R
3 × I,

(2)

where z ∈ I is the random variable, and B denotes
the boundary operator. For brevity, the following
analysis will be conducted on basis of the Bhatna-
gar–Gross–Krook (BGK) model

Q(f ) = ν(M − f ), M = ρ

(
λ

π

)3/2
e−λ(u−U)2 ,

(3)
whereM is the Maxwellian distribution function, ν is
the collision frequency and λ = m/(2kT), where m is
the particle mass and k is the Boltzmann constant.
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2.2. SG Formulation

The methods of UQ can be roughly divided into two
subsets, i.e. the intrusive and non-intrusive. The non-
intrusive method is basically sampling-based tech-
nique. Many realisations of random inputs are gener-
ated based on the prescribed probability distribution,
for which a deterministic problem is solved. The intru-
sive methods work in a way such that we reformulate
the original deterministic system. It promises an intu-
itive physical insight and higher-order convergence
in the random space. In this part, we introduces the
intrusive SG method on basis of the gPC.

Let us consider a gPC expansion of particle dis-
tribution function with degree N in random space,
i.e.

f (t, x, u, z) � fN =
N∑

|i|=0

f̂i(t, x, u)�i(z) = f̂
T
�, (4)

where i could be a scalar or aK-dimensional vector i =
(i1, i2, . . . , iK) with |i| = i1 + i2 + · · · + iK . The f̂i is
the coefficient of ith PC expansion, and the basis func-
tions used are the normalised orthogonal polynomials
{�i(z)} satisfying the following constraints:

E[�j(z)�k(z)] =
∫
Iz

�j(z)�k(z)�(z) dz

= δjk, 0 ≤ |j|, |k| ≤ N, (5)

where � is the probability density function. For brevity,
we use the notation 〈·〉 to denote taking moments
along random space henceforth. The expectation value
and variance can be evaluated through

E(fN) =
〈 N∑

i
f̂i�i

〉
= f̂0,

var(fN) =
〈( N∑

i
f̂i�i − E(fN)

)2〉
�

N∑
|i|>0

f̂ 2i .

(6)

After substituting Equation (4) into the kinetic
Equation (2) and performing aGalerkin projection, we
then obtain

∂t f̂ + u · ∇x f̂ = Q̂, (7)

where Q̂ is the gPC coefficient vector of the projection
from collision operator to the polynomial basis. With

the assumption of collision frequency,

ν � νN =
N∑
i

νi�i, (8)

the collision term in gPC expansion can be written as

fN = f̂
T
� =

N∑
i
f̂i�i,

f̂i
(
fN
) =

N∑
j

N∑
k

ν̂jm̂k
〈
�j�k,�i

〉

−
N∑
j

N∑
k

ν̂jf̂k
〈
�j�k,�i

〉
,

(9)

where m̂k is the kth coefficient in gPC expansion of
equilibrium distribution and can be determined by f̂ .

2.3. Asymptotic Analysis

The kinetic theory of gases indicates the correspon-
dence between macroscopic and microscopic vari-
ables. In the stochastic sense, the macroscopic flow
system can also be derived by taking moments along
phase space

W � WN =
∫

fN
 du =
∫ N∑

i
f̂i(t, x, u)

× �i(z)
 du

=
N∑
i

(∫
f̂i
 du

)
�i =

N∑
i
ŵi�i, (10)

where 
 is a vector of velocity moments fac-
tors. For conservative flow variables, it holds 
 =
(1, u, u2/2)T . In the following, we are going to analyse
the current SG BGK equation, with special focus on its
asymptotic limiting cases.

2.3.1. Homogeneous Case
Let us begin with spatially homogeneous case. In this
case, the BGK equation reduces to

∂tf = ν(M − f ). (11)

It holds the following analytical solution:

f = f0e−νt + M(1 − e−νt), (12)

where f0 is the particle distribution at initial time
instant. Given the SG method, we can reformulate the
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above solution as

f � fN = f̂
T
� =

N∑
i
f̂i�i,

f̂i =
〈 N∑

j
(f̂0j − m̂j)�j exp

(
−

N∑
k

ν̂k�kt

)
�i

〉
+ m̂i.

(13)
Different degrees and kinds of uncertainties can be
considered in the above solution.

Type I. If the uncertainty comes from stochastic
collision frequency ν and the initial particle distri-
bution function f0 is assumed to be deterministic,
then according to Equation (10) we have deterministic
macroscopic variables and the Maxwellian distribu-
tion. Therefore, Equation (13) reduces to

f̂i =
〈
(f0 − M) exp

⎛
⎝−

N∑
j

ν̂j�jt

⎞
⎠+ M,�i

〉
.

(14)

The variance of particle distribution function can be
approximated by var(f) � ∑N

|i|=1 f̂
2
i . It is obvious that

the variance is zero when f0 = M is a Maxwellian. If
f0 	= M, then the solution becomes stochastic. It can
be seen that the variance of solution is zero at either
t = 0 or t → ∞, which indicates that an extremum
must exist in between. The time to reach the extreme
point is determined by the magnitude of ν.

Besides, since the collision frequency is indepen-
dent of particle velocity, it will not affect the shape
of particle distribution in velocity space, but plays as
a scalar multiplier and only affects thermodynamic
properties.

Type II. If the uncertainty is imprinted within initial
distribution f0 and the collision kernel is deterministic,
Equation (13) becomes

f̂i = f̂0ie−νt + m̂i(1 − e−νt). (15)

Note that the initial distribution function and the
Maxwellian correspond to the same stochastic macro-
scopic conservative variables in the homogeneous case
where transport phenomena are absent, i.e.

ŵi =
(∫

f̂0i
 du
)

=
(∫

m̂i
 du
)

=
(∫

f̂i
 du
)
. (16)

Therefore, this case results in long-term and non-
vanishing effects of stochasticity. The variation of
stochastic solution in magnitude and shape depends
on the detailed form of fN andMN in particle velocity
and probability space.

Type III. The last type is a combination of the first
two cases. In this case, we need to return to the original
Equation (13) without simplification. As can be seen
in Equation (13), the gPC coefficients of the expan-
sions in fN and νN are nonlinearly coupled, which
makes it difficult to obtain a universal analytical con-
clusion about the evolution of stochastic solution. A
case-by-case analysis must be performed, considering
the relative importance of the detailed randomness
in the initial solution and the collision kernel. There-
fore, we resort to numerical simulations to solve the
problems in this case.

2.3.2. Inhomogeneous Case
In the spatially inhomogeneous case, if we assume that
the collision frequency is a local constant, the formal
integral solution of the BGK equation can be written
as

f (t, x, u, z) = ν

∫ t

t0
M(t′, x′, u, z)e−ν(t−t′) dt′

+ e−ν(t−t0)f0(x − u(t − t0), u, z), (17)

where x′ = x − u(t − t′) is the particle trajectory,
and f0(x, u, z) = f (t = t0, x, u, z) denotes the initial
solution.

In the collisionless limit with ν → 0, the above
solution reduces to

f (t, x, u, z) = f0(x − u(t − t0), u, z). (18)

A Galerkin projection of the above equation results in

f̂i(t, x, u) = f̂0i(x − u(t − t0), u), (19)

which indicates that the expectation value f̂00 and
the components of variance {f̂i, 1 ≤ |i| ≤ N} transport
with the same speed u in the flow field. In other words,
the propagation of the mean and random solution
fields in highly rarefied gas is correlated.

In the continuum limit with ν → ∞, the contribu-
tion from the initial value vanishes in Equation (17).
We approximate the equilibrium distribution function
around {t0, x0} with the first-order Taylor polynomial

M(t, x, u, z) = M0(1 + ∇xM0 · (x − x0)
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+ ∂tM0(t − t0)), (20)

whereM0 = M(t0, x0, u, z). Without loss of general-
ity, we can assume t0 = 0 and x0 = 0, and the integral
in Equation (17) becomes

f (t, x, u, z) = (1 + x · ∇x)M0 +
(
1
ν
e−νt + te−νt

)
u

· ∇xM0 +
(
1
ν
e−νt + t

)
∂tM0. (21)

It is obvious that the particle distribution function
and collision frequency are nonlinearly coupled. If we
further assume ν is deterministic, the above solution
reduces to

f̂i = (1 + x · ∇x)M̂0i +
(
1
ν
e−νt + te−νt

)
u

· ∇xM̂0i +
(
1
ν
e−νt + t

)
∂tM̂0i. (22)

It can be seen that the travel of stochastic solution
is constrained by space–time gradients as well as the
collision frequency. In other words, diffusion plays a
dominant role in the flow evolution. Due to the pos-
sible difference in magnitude of different modes in
the gPC expansion at different locations, the travel of
expectation and propagation of variance can exhibit a
certain degree of difference. A typical situation is that
the gradients of M̂0 and {M̂i, |i| ≥ 1} are opposite,
where the expectation and variance will travel in the
opposite direction.

To quantify the correlation between the evolution
of expectation and the propagation of variance, we can
define the Pearson correlation coefficient, i.e.

C = Ex
[
(Ez(β) − Ēz(β))(σz(β) − σ̄z(β))

]
σx(Ez(β))σx(σz(β))

, (23)

where {Ez, σz} denotes the expectation and standard
deviation in random space, {Ex, σx} denotes the expec-
tation and standard deviation of inhomogeneous solu-
tion in spatial domain, {Ēz, σ̄z} denotes themean value
of {Ez, σz} over spatial domain, and β is any scalar
quantity of interest, e.g. the particle distribution func-
tion or amacroscopic variable derived from its velocity
moments. The correlation coefficient ranges from −1
to 1. According to the knowledge of statistics (Lee
Rodgers and Nicewander 1988), the coefficient C is
positive if two variables tend to be simultaneously
greater than, or simultaneously less than, their respec-
tive means, while it is negative if they tend to lie on

opposite sides of their respective means. The stronger
is either tendency, the larger is the absolute value of
C. As two limiting cases, an absolute value of exactly
1 implies that a linear equation describes the relation-
ship between two variables perfectly, and a value of 0
implies that there is no linear dependency between the
variables.

It is noted that the above analysis is performed only
in the asymptotic limits of collision frequency ν. As we
enter the transition regime, the validity of asymptotic
analysis is not guaranteed, and the effects from indi-
vidual particle transport and intermolecular collision
need to be considered uniformly. Therefore, we need to
resort to numerical simulationwhich solves the kinetic
equation under stochastic settings. We will employ
the criterion in Equation (23) in numerical experi-
ments to check the correlation between expectation
and variance field in non-equilibrium flows.

2.3.3. Macroscopic Equations
The BGK Equation (1) can be rewritten into the suc-
cessive form

f = M − τDf = M − τD(M − τDf ) = · · · ,
(24)

whereD denotes the full derivatives along particle tra-
jectories, and τ = 1/ν is the mean relaxation time.
Truncating the right-hand side at a certain order
yields concrete kinetic solution as well as its upscaling
moment system, e.g. the Euler with O(τ ) truncation,
Navier–Stokes with O(τ 2) truncation, and so on.

Now we look into the SG system. Truncate the
solution with zeroth order, i.e.

f̂ � m̂, (25)

and insert the above solution into Equation (7). The
compatibility condition of collision term leads to

∫ ⎛
⎜⎝

1
u
1
2
u2

⎞
⎟⎠(m̂t + u · ∇xm̂

)
du = 0, (26)

and the corresponding Euler equations yield

∂

∂t

⎛
⎝ ρ̂

ˆ(ρU)

ˆ(ρE)

⎞
⎠+ ∇x ·

⎛
⎝F̂ρ

F̂m
F̂e

⎞
⎠ = 0, (27)

where {F̂ρ , F̂m, F̂e} are the gPC coefficients vector of
fluxes for density, momentum and energy. Note that
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the above system is not necessarily hyperbolic (Hu and
Jin 2017).

For the second-order truncation, the particle distri-
bution in gPC expansion becomes

f � fN =
N∑
i
f̂i�i,

f̂i = m̂i −
N∑
j

N∑
k

τ̂j(m̂kt + u · ∇xmk)
〈
�j�k,�i

〉
.

(28)

Substituting the above solution into Eq. (7), we come
to

∂

∂t

⎛
⎝ ρ̂

ˆ(ρU)

ˆ(ρE)

⎞
⎠+ ∇x ·

⎛
⎝F̂ρ

F̂m
F̂e

⎞
⎠ =

⎛
⎝ 0
Ŝm
Ŝe

⎞
⎠ , (29)

where

Ŝm =
∫

u
N∑
j

N∑
k

τ̂j(m̂ktt + 2u · ∇xmkt

+ u · ∇x(u · ∇xmk))〈
�j�k,�i

〉

 du,

Ŝe =
∫

1
2
u2

N∑
j

N∑
k

τ̂j(m̂ktt

+ 2u · ∇xmkt + u · ∇x(u · ∇xmk))〈
�j�k,�i

〉

 du. (30)

Note that in the deterministic limit, the derivatives of
Maxwellian can be evaluated with

∂m̂0

∂t
= 1

ρ̂0

∂ρ̂0

∂t
m̂0 + 3

2λ̂0

∂λ̂0

∂t
m̂0

+
(
−u2 + 2u · Û0 − Û2

0

) ∂λ̂0

∂t
m̂0

+
(
2uλ − 2Û0λ

)
· ∂Û0

∂t
m̂0,

∇xm̂0 = 1
ρ̂0

∇xρ̂0m̂0 + 3
2λ̂0

∇xλ̂0m̂0

+
(
−u2 + 2u · Û0 − Û2

0

)
∇xλ̂0m̂0

+
(
2uλ̂0 − 2Û0λ̂0

)
· ∇xÛ0m̂0, (31)

and Equation (29) reduces to deterministic
Navier–Stokes equations

∂

∂t

⎛
⎝ ρ̂0

ρ̂0Û0
ρ̂0Ê0

⎞
⎠+ ∇x ·

⎛
⎜⎝ ρ̂0Û0

ρ̂0Û0Û0
ρ̂0Û0Ê0

⎞
⎟⎠

= ∇x ·
⎛
⎝ 0

P̂0
Û0 · P̂0 − q̂0

⎞
⎠ . (32)

The stress tensor P̂0 and heat flux q̂0 are related to par-
ticle transport phenomena with non-vanishing mean
free path, i.e.

P̂0 = −p̂0I + μ

(
∇xÛ0 + ∇xÛT

0 − 2
3
(∇x · Û0)I

)
,

q̂0 = −κ∇xT̂0,

μ = τ0p̂0, κ = 5
2
k
m

τ̂0p̂0,

(33)

where p is the thermodynamic pressure, I is the iden-
tity tensor, and k is the Boltzmann constant.

3. Solution Algorithm

Section 2 corroborates the current stochastic kinetic
model in the hydrodynamic limit. However, as we
enter the deep end of Knudsen regimes with looser
particle interactions, the validity of asymptotic analy-
sis is not guaranteed. The direct numerical modelling
and simulation should be employed to investigate the
non-equilibrium flow dynamics in conjunction with
uncertainty propagation.

In this paper, a newly developed SKS is employed
to conduct numerical experiments. The method is a
natural extension of the gas kinetic scheme (GKS)
(Xu 2001; Xu and Huang 2010) under stochastic set-
tings. In the following, we briefly go through the solu-
tion algorithm of the scheme. To avoid tedious repe-
tition, we refer the interested readers to the literature
with detailed numerical implementation (Xiao and
Frank 2021a).

Within the finite volume framework, the gPC coef-
ficients of particle distribution function in the control
volume can be expressed as

f̂ (tn, xi, uj) = f̂
n
i,j = 1

�i(x)�j(u)

∫
�i

∫
�j

f̂ (tn, x, u)
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× dx du, (34)

where �i(x)�j(u) are the cell area in the discrete
physical and velocity space. The update of particle
distribution function is as follows:

f̂
n+1
i,j = f̂

n
i,j +

1
�i

∫ tn+1

tn

∑
Sr∈∂�i

SrF̂
f
r,j dt

+
∫ tn+1

tn
Q̂
f
i,j dt, (35)

where F̂
f
r is the time-dependent fluxes for distribu-

tion function at interface r in physical space, Sr is
the interface area and Q̂f

is the collision term. Tak-
ing velocity moments of Equation (35), we obtain the
corresponding macroscopic system

Ŵn+1
i = Ŵn

i + 1
�i

∫ tn+1

tn

∑
Sr∈∂�i

Sr · F̂Wr dt, (36)

where F̂Wr is the fluxes for conservative variables.
The evaluation of interface flux functions is mod-

elled by the evolving solution of kinetic equation.With
a simplified notation of the interface location xi+1/2 =
0 and the initial time instant within a time step tn = 0,
if we assume the collision frequency as a local constant
along physical, velocity and random space, the integral
solution of Equation (7) holds along the characteristics

f̂ (t, 0, uj) = ν

∫ t

0
m̂(t′, x′, uj)e−ν(t−t′) dt′

+ e−νt f̂ (0,−ujt, uj), (37)

where x′ = x − ut is the particle trajectory.
The initial solution of particle distribution

f̂ (0,−ujt, uj) can be obtained through reconstruction
technique, e.g.

f̂ (0, x, uj) =
⎧⎨
⎩
f̂
L
i+1/2,j, x < 0,

f̂
R
i+1/2,j, x ≥ 0,

(38)

with first-order accuracy and

f̂ (0, x, uj) =
⎧⎨
⎩
f̂
L
i+1/2,j + ∂x f̂ i,jx, x < 0,

f̂
R
i+1/2,j + ∂x f̂ i+1,jx, x ≥ 0,

(39)

up to second order, where f̂
L,R
i+1/2,j are the recon-

structed particle distribution around the interface, and

{∂x f̂ i,j, ∂x f̂ i+1,j} are their slopes in the neighbouring
cells.

The macroscopic conservative variables in the gPC
expansions at the interface can be evaluated by taking
moments over velocity space

ŵ =
∫
uj>0

f̂
L
i+1/2,j
 duj +

∫
uj<0

f̂
R
i+1/2,j
 duj, (40)

from which the equilibrium distribution function can
be defined. The equilibrium distribution around a cell
interface can be constructed with respect to desired
order of accuracy, e.g. for second-order accuracy

m̂(t, x, u) = m̂0
(1 + a · x + At). (41)

The space and time derivatives of Maxwellian are
related with macroscopic slopes and can be deter-
mined with the help of Euler equations

∂ŵ
∂t

=
∫

Am̂0

 du,

∇xŵ =
∫

am̂0

 du.

(42)

After all the coefficients are obtained, the time-
dependent interface distribution function can be writ-
ten as

fN(t, 0, uj) =
N∑
i
f̂i(t, 0, uj) = f̂

T
�̂,

f̂
(
0, t, uj

) = (
1 − e−νt) m̂0

j

+ [(−1 + e−νt) /ν + te−νt]u · am̂0
j

+ [(
νt − 1 + e−νt) /ν]Am̂0

j

+ e−νt
[(

f̂
L
i+1/2,j − ujt∂x f̂ i,j

)
H
[
uj
]

+
(
f̂
R
i+1/2,j − ujt∂x f̂ i+1,j

) (
1 − H

[
uj
])
,

(43)

where H is the heaviside step function. The corre-
sponding fluxes of particle distribution function and
conservative flow variables can be obtained via

FfN(t, 0, uj, z) = ujfN(t, 0, uj, z),

FWN (t, 0, z) =
∫

ujfN(t, 0, uj, z)
 duj,
(44)

and the time-integrated fluxes in Equations (35)
and (36) can be evaluated with respect to time in
Equation (43).
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Besides the construction of the interface flux, the
collision term needs to be evaluated inside control
volume for the update of particle distribution func-
tion within each time step. In the solution algorithm,
Equation (36) will be updated first, and the obtained
macroscopic variables will be used to construct the
Maxwellian at tn+1. As a result, an implicit update of
collision term can be achieved based on the explicit
solver framework. Let us rewrite the update algorithm
for the kth gPC coefficient of particle distribution
function in control volume (�i,�j)

f̂ n+1
i,j,k + �t

N∑
p

N∑
q

ν̂n+1
p f̂ n+1

q 〈�p�q�k〉

= f̂ ni,j,k + 1
�i

∫ tn+1

tn

∑
Sr∈∂�i

SrF̂
f
r,j,k dt

+ �t
N∑
p

N∑
q

ν̂n+1
p m̂n+1

q 〈�p�q�k〉, (45)

which forms a linear system in Af̂ = B manner. The
system can be directly solved, but brings consider-
able computational cost as the gPC expansion order N
increases. It can be solved in a more elegant way with
the hybridisation of Galerkin and collocationmethods
proposed (Xiao and Frank 2021a). The main idea of
thismethod can be summarised as to solve an intrusive
SG system with gPC expansions by using collocation
points. To make use of it, in the solution algorithm, we
first update the gPCmacroscopic variables to tn+1 step,
and the distribution function to the intermediate step
t∗

Ŵn+1
i,k = Ŵn

i,k + 1
�i

∫ tn+1

tn

∑
Sr∈∂�i

Sr · F̂Wr,k dt, (46)

f̂ ∗i,j,k = f̂ ni,j,k +
∑

Sr∈∂�i

SrF̂
f
r,j,k dt, (47)

which is then evaluated on the quadrature points zq

f ∗i,j,q = f ∗Ni,j(zq) =
N∑
m

f̂ ∗i,j,k(zq)�k(zq). (48)

Afterwards, the collision term is solved via

f n+1
i,j,q = f ∗i,j,q + �tνn+1

i,j,q (Mn+1
i,j,q − f n+1

i,j,q )

= (f ∗i,j,q + �tνn+1
i,j,q Mn+1

i,j,q )/(1 + �tνn+1
i,j,q ). (49)

The updated distribution function can be reabsorbed
into the gPC expansion

f̂ n+1
i,j,k = 〈f n+1

i,j ,�k〉, (50)

and the final solution in gPC expansion at tn+1 is

f n+1
Ni,j =

N∑
k

f̂ n+1
i,j,k �k. (51)

With the latter hybrid Galerkin-collocation method,
the computational efficiency can be improved with
orders of magnitude.

4. Numerical Experiments

In this section, we are going to conduct the numerical
experiments covering different flow regimes. Differ-
ent kinds of uncertainties will be coupled with the
flow evolving processes throughout the simulations.
The motivation of this section, on one hand, is to
investigatemulti-scale gas dynamic systemand analyse
typical flow phenomena in conjunction with propaga-
tion of uncertainties. On the other hand, it serves to
provide the first-hand benchmark solutions of UQ in
non-equilibrium flows.

For convenience, dimensionless variables will be
introduced in the simulations

x̃ = x
L0

, ρ̃ = ρ

ρ0
, T̃ = T

T0
,

ũ = u
(2RT0)1/2

, Ũ = U
(2RT0)1/2

,

f̃ = f
ρ0(2RT0)3/2

, T̃ = T
ρ0(2RT0)

,

q̃ = q
ρ0(2RT0)3/2

,

where R is the gas constant, T is the stress tensor and q
is the heat flux. The denominators with subscript zero
are characteristic variables in the reference state. For
brevity, the tilde notation for dimensionless variables
will be removed henceforth.

4.1. Homogeneous Relaxation of Non-equilibrium
Distribution

First let us consider the homogeneous relaxation of
particles from an initial non-equilibrium distribution.
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The evolution system writes

ft = ν(M − f ), f (t = 0, u) = u2e−u2 .

The uncertainty originates from collision kernel
and results in a stochastic collision frequency ν ∼
N (1, 0.22). It can be written into the gPC expansion

ν = 1 + 0.2z,

where 1 and z are the first two polynomials in the
Hermite system. The theoretical solution can be con-
structed following the integral solution of homoge-
neous kinetic model equation. Therefore, the particle
distribution function obeys a log-normal distribution
in the random space, and the expected value and stan-
dard deviation can be constructed as

E(f ) = f0 exp(−t + 0.04t2/2)

+ M(1 − exp(−t + 0.04t2/2)),

S(f ) = [(f0 − M)2(exp(0.04t2) − 1)

× exp(−2t + 0.04t2)]1/2.

This case serves as a benchmark validation of the cur-
rent numerical scheme. The detailed computational
setup can be found in Table 1.

The stochastic evolution of particle distribution
function in its expectation and standard deviation in
the phase space {t × u} is presented in Figure 1. With

Table 1. Computational setup of homogeneous relaxation.

t �t u Nu Integral N
[0, 10] 0.01 [−6, 6] 201 Newton–Cotes [0, 9]
Nq Polynomial ν

[1, 17] Hermite N (1, 0.22)

the occurrence of intermolecular interactions, the par-
ticle distribution function approaches the Maxwellian
gradually from initial bimodal non-equilibrium. A
maximal of standard deviation emerges close to the
time axis. Such a phenomenon corresponds to the
Type I stochasticity in Section 2.3.1 and the result
matches the theoretical analysis as well as the theo-
retical solution in Equation (14) perfectly. The evolu-
tion process can be understood from a physical point
of view. The stochastic collision frequency results in
prominent uncertainties only when the intermolecular
collision is happening significantly. As time goes with
t>8, the distribution function gets close to equilib-
rium state and is thus kept in a dynamical balance with
the Maxwellian, which is deterministic in this case.
Therefore, the collision term plays no more incentive
effects on the propagation of uncertainty.

As the microscopic particle distribution has a one-
to-one correspondence with its macroscopic system,
we can get the macroscopic evolution by taking
moments in the velocity space. Figure 2 presents the
time evolution of number density, velocity and temper-
ature. As is shown, the stochastic collision term here
plays as a scalar multiplier and only affects gas density.

For the validation of the current scheme, we plot
the L1 and L2 errors of the numerical solutions with
respect to varying order N for gPC expansions. As is
shown, the spectral convergence of the scheme in the
probabilistic space is clearly identified (Figure 3).

4.2. Normal Shock Structure

In the following, we turn to caseswith nonuniformdis-
tribution in space. The first example is normal shock

Figure 1. Expectation value and standard deviation of particle distribution within {t, u} ∈ [0, 10] × [−6, 6] in the homogeneous relax-
ation problem: (a) expectation and (b) standard deviation.
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Figure 2. Evolution ofmacroscopic density, velocity and temper-
ature within t ∈ [0, 10] in the homogeneous relaxation problem.
The results are normalised by the initial values.

structure, which is highly dissipative and related to
strong non-equilibrium effects. Based on the refer-
ence frame of shock wave, the stationary upstream
and downstream status can be described via the well-
known Rankine–Hugoniot relation

ρ+
ρ−

= (γ + 1)Ma2

(γ − 1)Ma2 + 2
,

U+
U−

= (γ − 1)Ma2 + 2
(γ + 1)Ma2

,

T+
T−

= ((γ − 1)Ma2 + 2)(2γMa2 − γ + 1)
(γ + 1)2Ma2

,

where γ is the ratio of specific heat. The upstream
and downstream conditions are denotedwith {ρ−,U−,
T−} and {ρ+,U+,T+}.

The collision frequency in the kinetic equation can
be derived from transport phenomena

ν = p
μ
,

where p is the pressure and μ is the viscosity coeffi-
cient. In this case, we continue dealing with random
collision term. A stochastic variable ξ is introduced in
the variable hard-sphere (VHS) model for the evalua-
tion of viscosity, which reads

μ = ξμ0

(
T
T0

)η

,

and the viscosity coefficient in the reference state is
connected with the Knudsen number

μ0 = 5(α + 1)(α + 2)
√

π

4α(5 − 2θ)(7 − 2θ)
Kn0,

where {α, θ , η} are parameters for the VHS model.
The computational setup for this case is presented in
Table 2.

The expectations and standard deviations ofmacro-
scopic variables at different upstream Mach numbers
Ma = 2 and 3 are presented in Figures 4 and 5. The
solution profiles produced by the discrete velocity
method (Xiao 2021b) with 10,000 Monte-Carlo sam-
plings are plotted as reference.

As shown in Figure 5, it is clear that the shock
wave serves as a source of uncertainties. The random
collision frequency results in the Type I stochasticity
where significant intermolecular interactions happen,
as analysed in Section 2.3.1. Given the fixed Rank-
ine–Hugoniot relationship, the status at the central

Table 2. Computational setup of normal shock structure.

x Nx u Nu Integral N
[−35, 35] 100 [−12, 12] 101 Newton–Cotes 5
Nq Polynomial ξ Ma Kn CFL
9 Legendre U(0.6, 1.4) [2, 3] 1 0.5
γ α θ η

3 1 0.5 0.81

Figure 3. Errors of expectation value and standard deviation of particle distribution function within {t, u} ∈ [0, 10] × [−6, 6] in the
homogeneous relaxation problem: (a) L1 error and (b) L2 error.
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Figure 4. Expectation values of macroscopic density, velocity and temperature in the normal shock structure: (a)E(ρ), (b)E(U) and (c)
E(T).

point of shock x = 0 are directly determined by the
upstream and downstream variables. Therefore, the
uncertainties of flow field present a bimodal pattern
inside the shock profile. In other words, the stochas-
tic collision kernel affects the width and shape of the
shock wave structure. Looking into the figures, we can
find it seems that the upstream half of shock centre is
more sensitive than the downstream part, resulting in
a sharper distribution of flow variables. Among all the
quantities, the deviation between upstream and down-
stream of temperature variance is most striking, indi-
cating a higher sensitivity of higher-order moments of
particle distribution function.

The gas kinetic modelling and simulation provide
us a chance to study the distribution of particles at
mesoscopic level. As analysed in Section 2.3, even
under the simple viscosity with linear distribution in
the random space, Equation (13) promises a cascade
evolution mechanism to correlate the gPC expansion
coefficients of all orders. Figure 6 presents the gPC

coefficients of particle distribution function at the
central point of shock from first order. As can been
seen, from the first-order gPC coefficient, the uncer-
tainties are delivered to higher-order moments with
descending magnitudes. Counting the contributions
from different orders via Equation (6), we get the cor-
responding expectation and variance of particle dis-
tribution function. The higher temperature leads to a
wider distribution of particles along velocity space at
Ma = 3. Similar as the profile in physical space, we see
the contributions from either side of particle distribu-
tion function in velocity space. Three local maximums
emerge on the standard deviation profile, which corre-
spond to most probable velocity, and its upstream and
downstream (Figure 7).

4.3. Shear Layer

Now let us consider the flow problems in which the
transverse processes dominates. A two-dimensional
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Figure 5. Standard deviations ofmacroscopic density, velocity and temperature in the normal shock structure: (a)S(ρ), (b)S(U) and (c)
S(T).

Figure 6. PC expansion coefficients of particle distribution function at the centre of normal shock structure: (a)Ma = 2 and (b)Ma = 3.

shear layer exists in the flow domain, with the initial
condition

⎡
⎢⎢⎣

ρ

U
V
T

⎤
⎥⎥⎦
L

=

⎡
⎢⎢⎣
1
0
ξ

1

⎤
⎥⎥⎦ ,

for the left half, and

⎡
⎢⎢⎣

ρ

U
V
T

⎤
⎥⎥⎦
R

=

⎡
⎢⎢⎣

1
0

−1
0.5

⎤
⎥⎥⎦ ,
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Figure 7. Expectation values and standard deviations of particle distribution function at the centre of normal shock structure: (a) E(f )
and (b) S(f ).

Table 3. Computational setup of shear layer.

t x Nx u Nu v
[0, 100τ0] [−1, 1] 1000 [−4.5, 4.5] 32 [−4.5, 4.5]
Nv Integral N Nq Polynomial ξ

64 rectangle 5 9 Legendre U(0.9, 1.1)
Kn CFL γ α θ η

0.005 0.5 1.67 1 0.5 0.81

for the right half. The reference viscosity coefficient is
evaluated in the same way as described in Section 4.2,
and then used to determine the collision time with

τ0 = μ0

p0
.

The simulation is conducted within the time period
t ∈ [0, 100τ0]. The computational setup is detailed in
Table 3.

Figures 8–10 show themacroscopic flow variables at
t = τ0, 10τ0 and 100τ0. Given the pressure difference,
the momentum and energy are transferred from left to
right. A transition layer is formed that bridges the left
and right status of the flow field. As time evolves, the
shear layer gradually thickens, in which the transport
and diffusion phenomena happen.

The stochastic simulation provides us the opportu-
nity to study the propagation of uncertainties along
with the expected bulk flow. From Figures 8– 10, we
see that the structure of expectation values and stan-
dard deviations of flow variables shows a consistent
pattern of variation. For example, the profiles of expec-
tation value and standard deviation ofV-velocity share
similarity in shape, and the higher gradients in the
expectation of density and temperature result in larger
magnitude in the standard deviation.

To further identify the relevance between the
travel of expected flow field and its variance, we
check the Pearson correlation coefficient defined in
Section 2.3.2. The correlation coefficients of density,
velocity and temperature at different time instants are
shown in Table 4. It can be seen that the correla-
tion coefficient of V-velocity, which holds the initial
random input, stays near the unit value during the
flow evolution. Therefore, the correlation between the
travel of expected flow field and the propagation of
uncertainties are clearly identified. We name such a
correspondence as the synchronous travel pattern of
expectation and variance. It indicates that the parti-
cle transport plays as the dominant mechanism within
t ∈ (0, 100τ0], of which the effects have been analysed
in Section 2.3.2. As the gas dynamic system evolves,
the accumulation of intermolecular collisions, i.e. the
diffusing effect, leads to a reduction of relevancy of
velocity and the increment in density and temperature.
Similar as the results in Section 4.2, compared with
density and velocity, the temperature distribution is
related to the second-order moments of particle distri-
bution function and possesses a higher sensitivity with
respect to randomness.

At different time instants, one can find the one-to-
one correspondence between the mean flow organi-
sations with their local maximums of variance. The
magnitude of variances is positively associatedwith the
gradients of flow variables inside the flow domain. We
use themacroscopic equations in Section 2.3.3 to iden-
tify the underlying principle semi-quantitatively. For
brevity, we take the first-order truncation of the Boltz-
mann moments system to illustrate the contribution



INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS 307

Figure 8. Expectation values and standard deviations of macroscopic density, velocity and temperature at t = τ0 in the shear layer: (a)
expected density and temperature, (b) expected velocity and (c) standard deviation.

of spatial distribution of flow variables onto stochastic
evolution. We write down the energy equation in the
Navier–Stokes system

∂t(ρE) + ∇x · (UρE) = −∇x · (P · U) − ∇x · q,
and project it into one-dimensional SG equation,
which yields

∂t(ρ̂E)i + ∂x
∑
j

∑
k

(ρ̂E)jÛk〈�j�k,�i〉

= −∂x
∑
j

∑
k

(
(P̂xx)jÛk + (P̂xy)jV̂k

)

〈�j�k,�i〉 − ∂x(q̂x)i.

We consider the initial status of the shear layer, i.e. the
gas is still in the x direction and only V-velocity pos-
sesses non-zero first-order gPC coefficient V̂1. There-
fore, the above equation reduces to

∂t(ρ̂E)i = −∂x
∑
j

∑
k

(
(P̂xy)jV̂k

)
〈�j�k,�i〉

− ∂x(q̂x)i,

where the jth gPC component of stress Pxy is

(P̂xy)j =
∫ ∑

p

∑
q

u(v − V̂p)f̂q〈�p�q,�j〉 du dv.

Therefore, the discontinuous distribution of first-
order gPC coefficients for V-velocity results in a non-
linear increase at the same order of energy, which turns
the initial deterministic temperature into stochastic
one. It also explains the sensitivity of temperature with
respect to randomness since such a nonlinear correla-
tion is absent in mass and momentum equations.

The particle distribution function along v-velocity
at the domain centre x = 0 is shown in Figure 11. Over
time, the particle distribution function evolves from
initial non-equilibrium bimodal distribution towards
Maxwellian, resulting in moderate profiles of con-
servative variables. Similar as macroscopic variables,
the clear upstream and downstream effects can be
observed in the standard deviations of particle dis-
tribution function, where each contributes a major
source for randomness. During the gas evolutionary
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Figure 9. Expectation values and standard deviations of macroscopic density, velocity and temperature at t = 10τ0 in the shear layer:
(a) expected density and temperature, (b) expected velocity and (c) standard deviation.

process, the magnitudes of variances are persistently
amplified.

4.4. Lid-Driven Cavity

The lid-driven cavity is a complex system under the
synergy of boundary effect, shearing process, swirling
flow and heat transfer. In the simulation, the gas is
enclosed by four solid walls, while the upper wall
is moving in the transverse direction with {Uw = ξ ,
Vw = 0}. TheMaxwell boundary condition is adopted
for all the walls, and thus the boundary distribution
function for flux evaluation is constructed as follows:

fw = MwH(u · n) + fin (1 − H(u · n)) , (52)

whereMw is theMaxwellian at solid wall, fin is the dis-
tribution function extrapolated from inner flowfield,n
is the unit direction vector of boundary andH(x) is the
heaviside step function. The detailed computational
setup is listed in Table 5.

In this case, the movement of upper surface is
the source for the inner fluid motion. The non-
equilibrium shearing transfers vorticity downwards
and helps form the eddies inside the cavity. Figure 12
presents expectation values and standard deviations
of U-velocity contours along with velocity vectors.
As is shown, a steady main vortex is formed in all
cases with different Knudsen numbers in the reference
state. At Kn = 0.001 two small corner vortices exist
along with the main eddy, while then disappears as
Kn increases. The results here are consistent with the
solutions shown in the literature (Xiao et al. 2018).

Figure 12(d) and (e) shows the standard deviations
of U-velocity inside the cavity. The results show that
the upper boundary and main vortex are two main
sources of uncertainty. As shown in Equation (52),
the stochastic wall speed defines the Maxwellian dis-
tribution at the boundary and then participates in
the flux evolution. Due to the slip effect in the gas-
surface interaction, the magnitude of velocity magni-
tude as well as its variance decreases persistently with
the increasing Knudsen number. Figures 13 and 14
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Figure 10. Expectation values and standard deviations ofmacroscopic density, velocity and temperature at t = 100τ0 in the shear layer:
(a) expected density and temperature, (b) expected velocity and (c) standard deviation.

Figure 11. Expectation values and standard deviations of particle distribution function at the domain centre x = 0: (a) expectation
value and (b) standard deviation.

provide the velocity distributions along the vertical
(x = 0.5) and horizontal (y = 0.5) centre lines. With
the increasing Kn, the intensity of vortex is damped
by the enhanced viscosity, resulting inmilder distribu-
tion along the centre lines. From Figure 13, we clearly
see the slip effect at boundary in the transition regime

of flow dynamics, and its influence on the expected
velocity profile and its variance.

For a better understanding of the transverse process
of flow dynamics inside the cavity, the distributions
of vorticity ω = ∂xV − ∂yU, are plotted in Figure 15.
Due to the fact that the main eddy (similar as point
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Figure 12. Expectation values (first row) and standarddeviations (second row)ofU-velocity (contour) and streamline (vector) at different
reference Knudsen numbers in the lid-driven cavity: (a) Kn = 0.001, (b) Kn = 0.075, (c) Kn = 0.5, (d) Kn = 0.001, (e) Kn = 0.075 and (f )
Kn = 0.5.

Figure 13. Expectation values (left) and standard deviations (right) of U-velocity along the vertical centre line x = 0.5 at different
reference Knudsen numbers in the lid-driven cavity. The velocities have been normalised by Uw : (a)E(U) and (b) S(U).

Table 4. Correlation coefficients of expectation values and stan-
dard deviations of different variables at different time instants in
the shear layer.

ρ U V T

t = τ0 0.002 0.837 1 0.125
t = 10τ0 0.016 0.632 1 0.237
t = 100τ0 −0.105 0.425 0.997 0.370

vortex) contributes negligible vorticity, the shearing
process near four boundaries plays a major role in
vorticity transport. Obviously, the slip effect also has
significant influence on the magnitude of boundary
vorticity flux. The strength of vorticity transport as

Table 5. Computational setup of lid-driven cavity.

x y Nx Ny u Nu
[0, 1] [0, 1] 45 45 [−5, 5] 60
v Nv Integral N Nq Polynomial
[−5, 5] 60 rectangle 4 7 Legendre
ξ Kn CFL γ α θ

U(0.9, 1.1) [0.001, 0.1] 0.8 1.67 1 0.5
η Boundary
0.72 Maxwell

well as its variance decreases in correspondence with
the increasing Knudsen number.

The heat transfer inside cavity is crossly coupled
with flow transport. Figure 16 shows the expectation
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Figure 14. Expectation values (left) and standard deviations (right) of V-velocity along the horizontal centre line y = 0.5 at different
reference Knudsen numbers in the lid-driven cavity. The velocities have been normalised by Uw : (a)E(V) and (b) S(V).

Figure 15. Expectation values (first row) and standard deviations (second row) of vorticity at different reference Knudsen numbers in
the lid-driven cavity: (a) Kn = 0.001, (b) Kn = 0.075, (c) Kn = 0.5, (d) Kn = 0.001, (e) Kn = 0.075 and (f ) Kn = 0.5.

values and standard deviations of temperature con-
tours along with heat flux vectors. As demonstrated,
the viscous heating at the top right corner contribute
one local maximum of temperature. Meanwhile, the
loose coupling among particles leads to an expansion
cooling effect around the top left, and results in a min-
imum in the transition regime. With the increasing
Knudsen number, the heat flux gradually deviates from
the Fourier’s law, and the heat transports from the
cold to hot region. Such an anti-gradient heat flux is
induced by viscous shearing, which is a typical non-
equilibrium phenomenon in the cavity flow.

Figure 16(d) and (e) shows the standard devia-
tions of temperature. Compared with the transport of
expected fields, the propagation of temperature vari-
ances presents a semblable distribution, i.e. the syn-
chronous travel pattern. To illustrate the relevance
between the travel of expected flow field and its vari-
ance, we provide the Pearson correlation coefficient
defined in Section 2.3.2 of density, velocity, tempera-
ture, heat flux and vorticity in Table 6. The correlation
between the travel of expected flow field and the prop-
agation of uncertainties is clearly identified. While
the U-velocity which accepts the boundary random
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Figure 16. Expectation values (first row) and standard deviations (second row) of temperature (contour) and heat flux (vector) at dif-
ferent reference Knudsen numbers in the lid-driven cavity: (a) Kn = 0.001, (b) Kn = 0.075, (c) Kn = 0.5, (d) Kn = 0.001, (e) Kn = 0.075
and (f ) Kn = 0.5.

input is basically consistent, the correlation of vortic-
ity as well as thermodynamic quantities strengthens
with the increasing Knudsen number. It can be under-
stood that as Kn increases, the loose coupling of par-
ticles enhances the freedom of transport phenomena,
and the corner-effect zones from two vertices enlarge
downwards. The influence of main eddy decreases
with increasing dissipation and the energy transport
inside cavity presents the tendency with enhanced
horizontal characteristics. Figure 17 presents the dis-
tribution of components of heat flux and their stan-
dard deviations. In spite of the synchronous travelling
between the mean field and its variance, it should be
noticed that such a correspondence does not neces-
sarily happen one by one. For example, at Kn = 0.5
the upper half of right side wall with high value of
E(qy) does not hold S(qy) maximum routinely as it is
at Kn = 0.075. The standard deviation does not vary
monotonically with respect to the Knudsen number,
but could hold a maximum at a certain point in the
transition regime. It can be inferred that peculiarity
exists for higher-order velocity moments of particle
distribution function, which is more sensitive to the
slight change of distribution function and its variance.

Table 6. Correlation coefficients of expectation values and stan-
dard deviations of different variables at different reference Knud-
sen numbers in the lid-driven cavity.

ρ U V T qx qy ω

Kn = 0.001 0.127 0.848 −0.129 0.995 0.855 0.292 −0.876
Kn = 0.075 0.072 0.843 0.051 0.962 0.848 −0.522 −0.948
Kn = 0.5 0.1434 0.845 0.108 0.846 0.963 −0.888 −0.981

5. Conclusion

As theCFDplays amore important role in the study on
flow mechanism and spacecraft design, deterministic
theoretical and numerical solutions may not be taken
for granted. In this paper, a general methodology of
modelling and simulating multi-scale flow dynamics
is proposed in conjunction with uncertain quantifi-
cation. The Boltzmann model equation is reformu-
lated with the SG method, and theoretical analysis is
presented quantitatively in both kinetic regime and
its upscaling macroscopic moments system. A newly
developed SKS is employed for numerical investiga-
tions with full validations. Different numerical experi-
ments, including homogeneous relaxation of particle
distribution function, normal shock wave structure,
transient shear layer and lid-driven cavity in different
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Figure 17. Expectation values and standard deviations of heat flux at different reference Knudsen numbers in the lid-driven cavity. The
four rows areE(qx), S(qx),E(qy) and S(qy), respectively: (a) Kn = 0.001, (b) Kn = 0.075, (c) Kn = 0.5, (d) Kn = 0.001, (e) Kn = 0.075,
(f ) Kn = 0.5, (g) Kn = 0.001, (h) Kn = 0.075, (i) Kn = 0.5, (j) Kn = 0.001, (k) Kn = 0.075 and (l) Kn = 0.5.

flow regimes, are studied subject to different kinds
of uncertainties from initial status, boundary condi-
tions and intermolecular collision kernels. Favorable
agreements are achieved between theoretical analy-
sis and numerical results. New physical phenomena,
such as the consistent propagating patterns of mean
fields and uncertainties from continuum to rarefied

regimes, are observed and analysed systematically. The
current method provides an innovative tool for sen-
sitivity analysis, flow diagnoses and optimisation for
the study of CFD, especially on non-equilibrium flow
dynamics. Confined to the computational resources,
multi-dimensional uncertainties in probabilistic space
will be further considered in future work.
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Appendix

In this appendix, we provide a further validation of the current
SKS. As the merit of the SKS is the coupled treatment of parti-
cle transport and collision in the evaluation of numerical flux,
we compare its performance here with the numerical method
proposed in the literature, which employs a purely upwind flux
function (Hu and Jin 2017). Note that the motivation here
is not to censure such methodology, but rather to choose a
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Figure A1. Expectation values and standard deviations of macroscopic density and V-velocity at t = 10τ0 computed by the SKS and
upwind schemes with 200 spatial cells in the shear layer problem: (a)E(n), (b)E(V), (c) S(n) and (d) S(V).

widely adopted numerical scheme as benchmark to illustrate
the reliability of our method for the study of multi-scale and
non-equilibrium flows.

The shear layer from Section 4.3 is used as the bench-
mark problem. While keeping the rest computational setups,
we employ a much coarser spatial grid and provide a grid-
convergence test of different numerical schemes. Figures A1
and A2 show the expectation values and standard deviations
of density and V-velocity with 200 cells at t = 10τ0 and 100τ0,
and Figures A3 and A4 provide the results with 400 cells.

As can be seen, compared with method with pure upwind
flux, the current SKS invariably provides the solution that are

closer to the reference solution under different numerical reso-
lutions. Thanks to the coupling of particle transport and colli-
sion in the construction of interface distribution function, the
numerical dissipation introduced in this step is of O(τ ), where
τ = 1/ν is the mean collision time, while the pure upwind flux
introduces the numerical error of O(�t), where �t is the time
step or the time interval in a multi-step integration. As a result,
the current method provides sharper flow structures on a rela-
tively coarse mesh and ensures faster convergence of solutions,
especially for near-continuum and long-time flow evolutions
where t � τ . The detailed mathematical analysis can be found
in Xu (2001) and Xiao et al. (2020).
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Figure A2. Expectation values and standard deviations of macroscopic density and V-velocity at t = 100τ0 computed by the SKS and
upwind schemes with 200 spatial cells in the shear layer problem: (a)E(n), (b)E(V), (c) S(n) and (d) S(V).
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Figure A3. Expectation values and standard deviations of macroscopic density and V-velocity at t = 10τ0 computed by the SKS and
upwind schemes with 400 spatial cells in the shear layer problem: (a)E(n), (b)E(V), (c) S(n) and (d) S(V).
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Figure A4. Expectation values and standard deviations of macroscopic density and V-velocity at t = 100τ0 computed by the SKS and
upwind schemes with 400 spatial cells in the shear layer problem: (a)E(n), (b)E(V), (c) S(n) and (d) S(V).
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