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The multi-scale nature of gaseous flows poses tremendous difficulties for theoretical 
and numerical analysis. The Boltzmann equation, while possessing a wider applicability 
than hydrodynamic equations, requires significantly more computational resources due 
to the increased degrees of freedom in the model. The success of a hybrid fluid-kinetic 
flow solver for the study of multi-scale flows relies on accurate prediction of flow 
regimes. In this paper, we draw on binary classification in machine learning and propose 
the first neural network classifier to detect near-equilibrium and non-equilibrium flow 
regimes based on local flow conditions. Compared with classical semi-empirical criteria 
of continuum breakdown, the current method provides a data-driven alternative where 
the parameterized implicit function is trained by solutions of the Boltzmann equation. 
The ground-truth labels are derived rigorously from the deviation of particle distribution 
functions and the approximations based on the Chapman-Enskog ansatz. Therefore, no 
tunable parameter is needed in the criterion. Following the entropy closure of the 
Boltzmann moment system, a data generation strategy is developed to produce training 
and test sets. Numerical analysis shows its superiority over simulation-based samplings. 
A hybrid Boltzmann-Navier-Stokes flow solver is built correspondingly with an adaptive 
partition of local flow regimes. Numerical experiments including the one-dimensional 
Riemann problem, shear flow layer, and hypersonic flow around a circular cylinder are 
presented to validate the current scheme for simulating cross-scale and non-equilibrium 
flow physics. The quantitative comparison with a semi-empirical criterion and benchmark 
results demonstrates the capability of the current neural classifier to accurately predict 
continuum breakdown. The code for the data generator, hybrid solver, and neural network 
implementation is available in the open source repositories [1,2].

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

Gases present a wonderfully diverse set of behaviors in different flow regimes. Such regimes are often categorized ac-
cording to the Knudsen number, which is defined as the ratio of molecular mean free path to a characteristic length scale. 
With the variation of Knudsen number, the domain of flow physics can be qualitatively divided into continuum (Kn < 0.001), 
slip (0.001 < Kn < 0.1), transition (0.1 < Kn < 10), and free molecular regimes (Kn > 10) [3]. The Knudsen number indicates 
the relative importance between individual particle transports and their collective dynamics.
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Different governing equations are routinely established to describe the fluid motions at different scales. As an example, 
in rarefied gas where Kn is of O (1), the particle transport and collision processes are distinguishable and can thus be 
modeled by two independent operators in the Boltzmann equation. In another limit with asymptotically small Kn, the Euler 
and Navier-Stokes equations are used to describe collective behaviors of fluid elements at a macroscopic level. It is worth 
mentioning that there is no quantitative description of the scale of a fluid element. Usually, it refers to a macroscopically 
infinitesimal concept, where the flow variables inside the element can be considered almost constant. With a high amount 
of intermolecular collisions, the fluid inside an element is considered to be in local thermodynamic equilibrium.

Computational fluid dynamics focuses on the numerical solution of the corresponding governing equations. The direct 
Boltzmann solvers employ a discretized phase space to compute transport and collision terms respectively. An alternative 
methodology is a direct simulation Monte Carlo (DSMC) method, which mimics the probability distribution function with a 
large number of test particles and the collision term is calculated statistically. On the other hand, the compressible Navier-
Stokes solvers are mostly based on the Riemann solvers for inviscid flux and the central difference method for viscous terms. 
Only the macroscopic flow variables are tracked in the simulation. Compared with the kinetic methods, the computational 
cost of continuum fluid solvers is much lower.

Macroscopic and microscopic equations describe the physical evolution of the same substance and should correspond 
to each other. The well-known Chapman-Enskog expansion bridges such a connection [4], where the Euler and Navier-
Stokes equations can be derived from the asymptotic limits of expansion solutions of the Boltzmann equation. Although 
the hydrodynamic equations are based on first-principle modeling, the Chapman-Enskog ansatz provides a rigorous crite-
rion to define their validity. In other words, the usage of hydrodynamic equations incorporates the assumption that the 
Chapman-Enskog solution plays a proper approximation of the particle distribution function. However, this judgment can-
not be verified in a macroscopic fluid simulation since the information on particle distribution functions has already been 
filtered in the coarse-grained modeling. The hydrodynamic equations may be misused where they don’t apply in scientific 
and engineering practice.

Different criteria have been proposed to predict the failure of continuum mechanics and construct the corresponding 
multi-scale numerical algorithms. Some typical examples are listed below. Bird [5] proposed a parameter P = D(lnρ)/Dt/ν
for the DSMC simulation of expansion flows, where ρ is gas density and ν is collision frequency, and the breakdown 
threshold of translational equilibrium is set as P = 0.05. Boyd et al. [6,7] extended the above concept to a gradient-length-
local Knudsen number KnGLL = �|∇ I|/I , where � is the local molecular mean free path and I is a scalar of interest, with 
the critical value being C = 0.05. Garcia et al. [8] proposed a breakdown parameter based on dimensionless stress and heat 
flux B = max(|τ∗|, |q∗|), with the switching criterion of B = 0.1. Levermore et al. [9] developed non-dimensional matrices 
from the moments of the particle distribution function. The tuning parameter �V is then defined as the deviation of 
the eigenvalues of this matrix from their equilibrium values of unity, with the critical value of 0.25. The idea of all the 
above methods is to assemble components in the Chapman-Enskog expansion. However, since the ground-truth information 
of particle distribution is missing in a macroscopic fluid simulation, it is virtually impossible to employ the quantitative 
deviation between particle distributions from the full Boltzmann solution and the Chapman-Enskog reconstruction directly. 
It is difficult to prove that the above criteria can be universally applied to complex systems under different conditions of 
flow and geometry.

The rapid development of deep learning provides us with a promising alternative for classification and regression tasks. 
The relevant modeling and simulation strategies have been applied in fluid mechanics, e.g., building data-to-solution map-
ping [10–12], constructing physics-informed neural networks [13–15], identifying sparse dynamical systems [16–18], and 
solving kinetic equations [19–21]. In this paper, we turn to the application of binary classification. The idea is to employ 
neural networks as surrogate models, which classify the most probable flow regime based on local flow conditions. The neu-
ral networks accept macroscopic quantities including velocity moments and their slopes serve as inputs, and return labels 
of flow regimes. Following the principle of minimal entropy distributions, a data generation strategy is developed to sample 
particle distributions near and out of equilibrium in the training and test sets. Based on kinetic solutions, the ground-truth 
labels are rigorously determined by the deviation between the particle distribution functions and the Chapman-Enskog so-
lutions. Therefore, a data-driven parameterized function is defined implicitly by the neural network in the high-dimensional 
function space. Based on the neural classifier, we develop a multi-scale hybrid method, which realizes a dynamic adaptation 
of flow regimes and fuses the continuum and kinetic solutions seamlessly.

The paper is organized as follows. In Sec. 2 we introduce some fundamental concepts in the kinetic theory of gases and 
the Chapman-Enskog expansion. Sec. 3 presents the idea and design of the neural network architecture. Sec. 4 introduces the 
strategy for generating data in training and test set. Sec. 5 details the numerical algorithm of the hybrid solver incorporated 
with the neural network classifier. Sec. 6 contains several numerical experiments to validate the current method. The last 
section is the conclusion. The nomenclature in the paper can be found in Table 6.

2. Kinetic theory

The Boltzmann equation describes the time-space evolution of a one-particle distribution function f (t, x, v) in dilute 
monatomic gas, i.e.,
2
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∂t f + v · ∇x f = Q ( f , f ) =
∫
R3

∫
S2

[
f
(
v′) f

(
v′∗
)− f (v) f (v∗)

]
B(cos θ, g)d�dv∗, (1)

where {v, v∗} are the pre-collision velocities of two classes of colliding particles, and {v′, v′∗} are the corresponding post-
collision velocities. The collision kernel B(cos θ, g) measures the probability of collisions in different directions, where θ is 
the deflection angle and g = |g| = |v − v∗| is the magnitude of relative pre-collision velocity. The solid angle � is the unit 
vector along the relative post-collision velocity v′ − v′∗ , and the deflection angle satisfies the relation θ = � · g/g .

The Boltzmann equation depicts a physical process with increasing physical entropy. The H-theorem indicates that the 
entropy is a Lyapunov function for the Boltzmann equation and the logarithm of its maximizer must be a linear combination 
of the collision invariants ψ = (1, v, |v|2/2)T [22]. The equilibrium solution related to maximal entropy is the so-called 
Maxwellian distribution function,

M := ρ
( m

2πkT

)3/2
exp(− m

2kT

(
v − V)2

)
, (2)

where m is molecular mass, V is macroscopic fluid velocity, T is temperature, and k is the Boltzmann constant.
The macroscopic conservative flow variables can be obtained by taking moments from the particle distribution function 

over velocity space, i.e.,

W =
⎛
⎝ ρ

ρV
ρE

⎞
⎠ =

∫
f ψdv, (3)

where ρE = ρV2/2 +ρe, e is the internal energy per unit mass, and ψ is the vector of collision invariants. For an ideal gas, 
the internal energy is related to temperature as

ρe = 3

2
nkT , (4)

where n = ρ/m is the number density. Taking moments of the Boltzmann equation with respect to collision invariants yields 
the transport equations for conservative variables,

∂tW +
∫
R3

ψv · ∇x f dv = 0, (5)

i.e.,

∂ρ

∂t
+ ∇ · (ρV) = 0,

∂(ρV)

∂t
+ ∇ · (ρV ⊗ V) = ∇ · P,

∂(ρE)

∂t
+ ∇ · (ρEV) = ∇ · (P · V) − ∇ · q,

(6)

where ⊗ denotes dyadic product, and the stress tensor P and heat flux q are defined as,

P =
∫

(v − V)(v − V) f dv, q =
∫

1

2
(v − V)(v − V)2 f dv. (7)

The flux terms in the above equations are one order higher than the leading terms, which leads to the well-known 
closure problem [23]. Different closure strategies, i.e., different forms of the distribution function f , result in vastly different 
macroscopic transport equations. In the following, we briefly show the methodology of Chapman-Enskog ansatz, where the 
Navier-Stokes equations can be derived from the asymptotic solution of the Boltzmann equation. With the introduction of 
the following dimensionless variables

x̃ = x

L0
, t̃ = t

L0/V 0
, ṽ = v

V 0
, f̃ = f

n0 V 3
0

, (8)

where V 0 = √
2kT0/m is the most probable molecular speed, the Boltzmann equation can be reformulated as

∂t f̃ + ṽ · ∇x̃ f̃ = 1

Kn
Q ( f̃ , f̃ ). (9)

The Knudsen number is defined as
3
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Kn = V 0

L0ν0
= �0

L0
, (10)

where �0 and ν0 are the molecular mean free path and mean collision frequency in the reference state. For brevity, we drop 
the tilde notation to denote dimensionless variables henceforth.

Based on a small Knudsen number Kn = ε, the Chapman-Enskog expansion approximates the particle distribution func-
tion [4] as,

f � fε =
∞∑

n=0

εn f (n), f (0) := M. (11)

Truncating the above expansion to the first non-trivial order, substituting it into Eq. (9) and projecting the kinetic system 
onto the hydrodynamic level, one can derive the Navier-Stokes equations.

Here we omit the tedious mathematical derivation and refer the reader to the literature [24]. The detailed expansion 
solution for the Navier-Stokes regime writes

fNS, Boltzmann =M
[

1 − 2κ

5Rp

(
c2

2RT
− 5

2

)
c · ∇x(ln T )

− μ

RT p

(
c ⊗ c − 1

3
c2I

)
: ∇xV

]
,

(12)

where R is the gas constant and c = v − V is the peculiar velocity. The viscosity and heat conductivity are determined by 
specific molecule models. For example, the viscosity coefficient for hard-sphere molecules takes the form

μ = μ0

(
T

T0

)ω

, (13)

where μ0 is the viscosity coefficient in the reference state, ω is the power index that needs to be calibrated for different 
substances, and the heat conductivity is linked by the Prandtl number Pr = cpμ/κ where cp is the specific heat of the gas 
at a constant pressure.

3. Neural network based classification of the flow regime

The universal approximation theorem [25], as a generalization of Stone-Weierstrass theorem [26], indicates that a neural 
network in its simplest form can approximate continuous functions on compact subsets of Rn , provided that there are 
sufficient neurons under mild assumptions on the activation function. Defined in latent space and driven by data, the 
neural network simplifies data representations to find patterns in supervised learning. Such surrogate models can provide 
an alternative for semi-empirical criteria to classify the continuum breakdown regions of a flow field.

Following the spirit of Chapman-Enskog expansion, we build the neural network model as

R̂ = NNθ (U), with U = (W,∇xW, τ )� (14)

where θ denotes the trainable parameters of the neural network. As shown in Fig. 1, the input of neural network U is a 
combination of macroscopic variables, their slopes, and mean collision time. The idea to constitute such function inputs is 
to draw on the Chapman-Enskog ansatz and provide the necessary information for the reconstruction of probable particle 
distribution functions. The output R̂ is set to be a scalar, which denotes the likelihood for the current cell to be in the 
non-equilibrium regime. The depth of the neural network is set as 4. The architecture is set as 7 × 28 × 56 × 28 × 1 
for the one-dimensional flow problem and 9 × 36 × 72 × 36 × 1 for the two-dimensional problem. The neural network 
employs the sigmoid function as activation in the last layer, and thus the output satisfies R̂ ∈ [0, 1] naturally. With the 
floor function, the output takes binary values, where 1 denotes rarefied (non-equilibrium) and 0 denotes continuum (near-
equilibrium) regime.

In the supervised learning task, the dataset consists of a set of inputs and ground-truth labels corresponding to the 
function U 
→ R̂. For a given distribution function fref, the flow regime label is defined as

R =
{

1, d > ε

0, d ≤ ε
, d = || fNS − fref||2

ρ
, (15)

where d denotes a normalized norm between the reference particle distribution function and the reconstructed Navier-
Stokes distribution, and ε is an acceptable error value that defines the label and needs to be defined manually. In the 
current work, ε is chosen as 1%. Following the Chapman-Enskog ansatz, the Navier-Stokes distribution function can be 
constructed using Eq. (12). Note that the macroscopic quantities in the above equations can be obtained by taking moments 
of reference distribution function as in Eq. (3), and the collision time τ = 1/ν can be derived from kinetic theory.
4
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Fig. 1. The neural network-based regime classifier using macroscopic variables, their gradients, and the collision time to predict the flow regime of the 
current grid cell.

Given the definition of labels in the dataset, the idea of the current neural network becomes clear. The data-driven ap-
proach builds an implicit function U 
→ R̂ in the high-dimensional functional space spanned by neural network parameters.

The macroscopic flow variables, which are calculated from the reference kinetic solution fref, are inputs to the neural 
network, and its prediction is the flow regime. Thus one may understand the neural network’s internal mechanism as an 
implicit reconstruction of the most probable kinetic solution, which is then compared to the Chapman-Enskog solution to 
determine the flow regime. The surrogate model provided by the neural network bridges macroscopic variables and flow 
regimes directly. Compared with classical criteria for continuum breakdown, no empirical and semi-empirical expansions 
are needed from asymptotic theory.

For this binary classification task, we employ the binary cross-entropy as a loss function, i.e.,

L = − 1

N

N∑
i=1

Ri · log R̂i + (1 −Ri) · log
(

1 − R̂i

)
, (16)

where R̂ is the i-th scalar value in the model output, R is the corresponding target regime value, and N denotes the 
size of the training set. The cross-entropy is equivalent to fitting the model using maximum likelihood estimation. As the 
information entropy is constant given a defined dataset with fixed labels, minimizing the cross-entropy is equivalent to 
minimizing the Kullback-Leibler divergence between the empirical distribution of training data and the distribution induced 
by the model. The ADAM optimizer is used during all training processes. The training and testing data is produced by 
sampling and processing prescribed kinetic solutions of particle distribution functions, and the validation set is generated 
with the help of kinetic simulation data from numerical cases.

4. Data generation

As presented in Eq. (15), the information of exact particle distribution functions f is needed to compute macroscopic 
quantities U and regime labels. In the following, we consider the space of f as the sampling space under the constraint

f ∈ F =

⎧⎪⎨
⎪⎩ f (v) ≥ 0 :

∣∣∣∣∣∣∣
∫
R3

f ψidv

∣∣∣∣∣∣∣ < ∞, i = 0,1,2

⎫⎪⎬
⎪⎭ , (17)

i.e. the existence of the first 3 moments {ρ, ρV, ρE} and non-negativity of the particle distribution. A strategy to sample 
data from F usually creates a data-distribution pF implicitly, which influences the training and test performance of the 
neural network. As the goal of the classification network is to find the separation hyperplanes between the near-equilibrium 
and non-equilibrium regime, we need to systematically create a data distribution pF that generates enough samples near 
the boundary between regimes. A naive strategy is to sample data by performing numerical simulations and storing the 
required data in a post-processing fashion. The disadvantage of this is that pF can be heavily biased toward the dynamics 
of the chosen test cases and might not necessarily cover enough different regions of flow regimes. Furthermore, it comes 
with the computational expense of a full kinetic solver, that might compute the same solutions multiple times, e.g. in the 
far-field of a fluid simulation. In the following, we demonstrate a sampling strategy to generate balanced data near and out 
of equilibrium.

4.1. Sampling of particle distribution functions

The sampling of data leverages the entropy closure of the Boltzmann moment system. We briefly introduce the principle 
here and refer to [23,27,28] for details. A general closure aims to reconstruct the particle distribution function f from a 
vector of moments
5
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Fig. 2. Sampling of particle distribution functions. The more a function deviates from the Maxwellian, the higher the condition number of the corresponding 
entropy problem.

u =
∫
R3

f mdv ∈RNm , (18)

under the constraint

f ∈ F M =

⎧⎪⎨
⎪⎩ f (v) ≥ 0 :

∣∣∣∣∣∣∣
∫
R3

f midv

∣∣∣∣∣∣∣ < ∞, i = 0, . . . , Nm

⎫⎪⎬
⎪⎭ , (19)

where m(v) ∈ RNm is a vector of velocity dependent basis functions. We choose the basis in a way that the first three 
moments coincide with the conservative variables of the Navier-Stokes equations in Eq. (3). We thus rewrite m(v) in the 
following form,

m(v) = (ψ0,ψ1,ψ2, m̃(v))T , (20)

where m̃(v) can be arbitrary monomials and mixed polynomials up to degree Nm and ψi are the collision invariants of the 
Boltzmann equation. In the current work, we choose Nm = 4, thus m resembles Levermore’s 14 moment system [29], i.e.

m(v) =
(

1,v, |v|2/2,v ⊗ v − |v|2I, |v|2v, |v|4
)T

(21)

The minimal entropy closure employs an optimization problem to ensure the uniqueness of the solution of the closure 
problem. The objective function of the optimization problem is denoted by the integrated mathematical entropy density η. 
For the choice of entropy from Maxwell-Boltzmann statistics η( f ) = f log( f ) − f [30], the minimal entropy closure problem 
reads

min
g∈Fm

∫
R3

g log(g) − gdv s.t. u =
∫
R3

mgdv. (22)

If a solution of this optimization problem exists,1 it can be represented as

fu(v) = exp(αum(v)), (23)

where αu ∈RNm is the vector of Lagrange multipliers of the dual formulation of the optimization problem, which reads

αu = argmin
α∈RNm

⎧⎪⎨
⎪⎩
∫
R3

exp(α · m)dv − α · u

⎫⎪⎬
⎪⎭ . (24)

The idea is to generate distribution functions which are solutions of the minimal entropy closure using Eq. (23). Specifi-
cally, we sample the corresponding Lagrange multipliers α . For the sake of simplicity, we drop the subscript notation in the 
following. For example, the Maxwellian in Eq. (2) can be expressed with the following choice of α ,

1 Even if u ∈ R, there may not exist a solution to Eq. (22) [31].
6
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M = exp(α · m), α = (α0,α1,α2, . . . ,αn)
T ,

α0 = ln(ρ/(2πkT )3/2) − V2/(2kT ), α1 = V

kT
, α2 = − 1

2kT
, αn = 0 for all n > 2.

(25)

The disturbance from the equilibrium state can be controlled for example by choosing αn �= 0 for n > 2. For a fixed length 
Nm of the Lagrange multiplier vector α, we sample αn for n > 0 normally distributed with a prescribed standard deviation. 
The sampling mean is chosen according to the Lagrange multiplier, which recovers the Maxwellian above. Without loss of 
generality, we assume that u0 which corresponds to ρ in terms of conservative variables equals one. For αn �= 0, n > 2, in 
general, the computed particle density ρ �= 1. To enforce the assumption, that u0 = ρ = 1 we use for a given set of sampled 
coefficients α the ansatz

u0 = ρ = 1 =
∫
R3

exp(α · m)dv. (26)

Applying the natural logarithm to both sides of the equation, we get

α0 := ϑ(β) = − ln

⎛
⎜⎝∫
R3

exp(β · (m1,m2, . . . ,mNm )T )dv

⎞
⎟⎠ (27)

with β = (α1, α2, . . . , αNm )T - The set of all moments u for which the minimal entropy problem in Eq. (22) has a solution is 
called the realizable set

R =

⎧⎪⎨
⎪⎩u : u =

∫
R3

gmdv, g ∈ Fm

⎫⎪⎬
⎪⎭ . (28)

Further, for mi = ψi , the corresponding moment ui equals a conservative variable W i of Eq. (3). It should be noted that the 
minimal entropy problem has no solution at the boundary ∂R of the realizable set and its condition number σH increases 
when approaching the boundary. The condition number of the minimal entropy closure at a moment u can be computed 
via the positive semi-definite Hessian of the dual problem (24), i.e.

H(α) =
∫
R3

m ⊗ m exp(α · m)dv. (29)

Using the condition number of Hu we can control the sampling of reference densities in near-equilibrium and non-
equilibrium regimes. In this work, we use the condition number threshold as τcond = 10−3 for the basis (21).

Reconstructed particle distributions with moments for which the minimal entropy closure has a low condition number 
are typically similar to the Maxwellian. Distribution functions corresponding to moments near ∂R , where the minimal 
entropy problem is ill-conditioned, are highly anisotropic and have a high distance to a Maxwellian, which is illustrated 
in Fig. 2. Further insights into the realizability condition have been studied in detail [30,32–36]. The resulting sampling 
strategy is summarized in Algorithm 1.

Algorithm 1: Minimum entropy sampling of kinetic densities.
Input : V tr : Truncated velocity domain

σα : Sampling std. deviation for α
T , V : Temperature and bulk velocity
τcond: Condition number threshold

Result: F T : Set of sampled kinetic densities

for i = 0 to i = T do

βmean ←
[

V�
kT ,− 1

2kT ,0, . . .
]�

/* Compute sampling mean */

do
β ∼N (βmean, σα) /* Sample reduced multipliers */

α ← [
ϑ(β),β�]�

/* Reconstruct normalized multipliers */

while σH < τcond

fi ← exp(α · m) /* Compute kinetic density */
Append f i to F T .

end
7
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Fig. 3. Sampling of reference solution at the interface of two neighboring ghost cells and Chapman-Enskog reconstruction for Kn = 0.001 and dx = 0.01 in 
1 spatial dimension.

Fig. 4. Distributions of data points in U -T phase diagram from the current algorithmic generator and sampled from Sod shock tube solution.

Note that Eq. (23) requires a velocity mesh to record the generated distribution function. In the current work, we truncate 
the velocity domain as v ∈ V tr = [−4

√
RT0, 4

√
RT0

]
where T0 = 10, and employ 200 quadrature points in each velocity 

direction.

4.2. Assembly of the training data

The input of the neural network contains not only a set of conservative variables but also their gradients and local 
collision time. The idea for data generation is to combine two sampled distribution functions { f L, f R} with two adjacent 
ghost cells, of which the positions {xL , xR} as well as the unit normal vector n are randomly sampled. Therefore, the 
reference particle distribution function at the interface can be approximated via an upwind reconstruction,

fref(v) = f L(v)H(n · v) + f R(v) (1 − H(n · v)) , (30)

where H is the Heaviside step function. The conservative variables {W, WL , WR} are obtained by taking moments of fref, 
and the gradients ∇xW are computed with a finite difference formula. Fig. 3a) displays the upwind approximation and 
Chapman-Enskog reconstruction in Eq. (12) from the corresponding conservative variables at the interface of two ghost 
cells with near equilibrium distributions and Fig. 3b) the reconstruction of two non-equilibrium solutions. One sees, that 
in Fig. 3a) the Chapman-Enskog reconstruction is close to the upwind approximation, whereas in Fig. 3b) the respective 
distributions have a very different shapes.

Using a randomly sampled Knudsen-number Kn from a predefined range, we can compute the local collision time 
τ = 1/ν and obtain a completely assembled training data point U = (W, ∇xW, τ ). Finally, we compute the label of the 
training data point by first computing fNS using Eq. (12) and then calculating the distance to the sampled reference solution 
fref using Eq. (15). The resulting sampling strategy is displayed in Algorithm 2.
8
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Algorithm 2: Sampling of labeled training data.
Input : [Knmin, Knmax]: Range of Knudsen numbers

[ρmin, ρmax]: Range of particle densities
[xmin, xmax]: Range of cell-center distances

Result: XT = {
( Q i ,Ri)

}
i∈T : Training data-set

F T ← Algorithm 1 /* Compute reference kinetic density functions */
for i = 0 to i = T do

f L , f R ∼ F T /* Sample f of left and right cell */
ρL , ρR ∼ uniform([ρmin, ρmax]) /* Sample macroscopic density to f L and f R */
f L , f R ← ρL f L , ρR f R /* Scale f L and f R */
uL , uR ← ∫

φ f Ldv, ∫ φ f R dv /* Compute macroscopic variables */

xL , xR ∼ uniform[xmin, xmax]d /* Sample ghost cell centroids */
n ← (xL − xR )/ ‖xL − xR‖ /* Compute cell interface normal */
fref(v) ← f L(v)H(n · v) + f R (v) (1 −H(n · v)) /* Upwind scheme */
Wi ← ∫

φ frefdv /* Compute macroscopic variables */
∇xWi ← (WL − WR )/ ‖xL − xR‖ /* Compute slope of macro. var. */
τi ← μ/p /* Hard-sphere model for τ */
fNS ←Eq. (12) /* BGK reconstruction of fNS */
Ri ←Eq. (15) /* Determine local regime */

Ui ← [
W�

i ,∇xW�
i , τi

]�
Append (Ui , ri) to XT .

end

Fig. 5. Distributions of data points in ∇U -∇T phase diagram from the current algorithmic generator and sampled from Sod shock tube solution.

To illustrate the superiority of the current data generation strategy, we compare the data distributions resulting from 
Algorithm 2 to the data gathered from the simulation results of the standard Sod shock tube problem with a full Boltzmann 
simulation. Details of the setup can be found in Sec. 6.1. Fig. 4(a) shows the macroscopic variables generated by the data 
generator using Algorithm 2 and Fig. 4(b) displays the generation from the simulation results. The results have been normal-
ized via W̃ = W/ρ is displayed. It is evident, that the samples from the kinetic solver have a strong bias toward positive bulk 
velocity. Temperature and velocity are strongly correlated. In contrast, the algorithmic sampler generates a wide range of 
macroscopic variables with different ranges of U and T . Besides, the generated gradients of the macroscopic variables ∇xW
are shown in Fig. 5. The data sampled by the generator is shown in Fig. 5(a) and exhibits a distribution that is concentrated 
around the origin, without strong bias towards a specific direction, whereas the data generated by the solver in Fig. 5(b) 
displays again a strong bias and fails to cover most parts of the domain. Furthermore, the presented sampling strategy does 
not require the computational expense of full simulations, possibly with multiple initial conditions. Computational resources 
for the data sampler can be found in [1].

5. Solution algorithm

In this section, we present the numerical implementation of the adaptive scheme based on the neural classifier. The 
solution algorithm is built on top of a finite volume method.
9
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︸ ︷︷ ︸ ︸ ︷︷ ︸

adaptation facecontinuum face kinetic face

near-equilibrium non-equilibrium

Navier-Stokes Boltzmann

Fig. 6. Schematic of the adaptive scheme for multi-scale flow.

5.1. Kinetic solver

Given the notation of cell-averaged particle distribution function in the physical element �i and velocity element � j ,

f n
i, j = 1

�i(x)� j(v)

∫
�i

∫
� j

f (tn,x,v)dxdv, (31)

the update algorithm of the finite volume scheme writes

f n+1
i, j = f n

i, j − 1

�i

∑
r∈∂�i

tn+1∫
tn

F f
r, j · nr Srdt +

tn+1∫
tn

Q j( f i, f i)dt, (32)

where nr is the unit normal vector of surface r that points outside of the element �i , and Sr is the surface area. The 
interface flux of distribution function F f can be computed via an upwind reconstruction,

F f
i+1/2, j = v j

(
f L H(v j · ni+1/2) + f R

(
1 − H(v j · ni+1/2)

))
, (33)

where H is the Heaviside step function, and the status on the left and right sides of the interface are reconstructed via

f L = f i, j + ∇ f i, j · (xi+1/2 − xi),

f R = f i+1, j + ∇ f i+1, j · (xi+1/2 − xi+1).
(34)

Inside each element, the collision term Q ( f , f ) is computed by the fast spectral method [2]. The discrete Fourier transform 
is employed to solve the convolution in the spectral domain efficiently. We refer to [37] for a detailed formulation of this 
method.

5.2. Navier-Stokes solver

We define the average conservative flow variables in an element as

Wn
i = 1

�i(x)

∫
�i

W(tn,x)dx, (35)

and the finite volume algorithm writes

Wn+1
i = Wn

i − 1

�i

∑
r∈∂�i

tn+1∫
tn

FW
r · nr Srdt. (36)

A key step for solving conservation laws is to compute the fluxes FW of conservative variables. Here, we employ the 
Chapman-Enskog solution from the BGK-type relaxation model [38] to construct numerical fluxes. The relaxation model 
writes

∂t f + v · ∇x f = ν(E − f ). (37)

The equilibrium distribution E can be chosen as the Maxwellian in Eq. (2) or its variants [39,40], and ν is the collision 
frequency. The above equation can be written in the following successive form

f = E − τ DtE + τ Dt(τ DtE) + · · · , (38)
10
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Fig. 7. Prediction of flow regimes from fully kinetic solutions at t = 0.15 in the Sod shock tube with different criteria (0 denotes near-continuum, 1 denotes 
non-equilibrium).

where Dt denotes total derivative operator and τ = 1/ν . The above equation has the same structure as Eq. (11), and thus 
the first-order truncation of Chapman-Enskog expansion writes [41],

f � E − τ (∂tE + v · ∇xE). (39)

In the solution algorithm, we follow the Chapman-Enskog expansion and construct the particle distribution function at 
interface xi+1/2 with an upwind approach,

f L = EL (1 − τ (aL · v + bL)) ,

f R = ER (1 − τ (aR · v + bR)) ,
(40)

where {EL, ER} are the equilibrium distributions computed from reconstructed macroscopic variables, i.e.,

WL = Wi, j + ∇Wi, j · (xi+1/2 − xi),

WR = Wi+1, j + ∇Wi+1, j · (xi+1/2 − xi+1).
(41)

In a well-resolved region, the relation WL = WR holds, and Eq. (40) deduces to standard Chapman-Enskog expansion natu-
rally. The spatial derivatives of the particle distribution function aL,R are related to macroscopic slopes via∫

aL,REL,Rψdv = ∇xWL,R , (42)

where ψ = (1, v, v2/2)T are the collision invariants. Then aL,R can be obtained by solving a linear system [42]. Then the 
time derivative bL,R can be obtained through the compatibility condition of the BGK model, i.e.,∫

ν(E − f )ψdv = 0, (43)
11
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Fig. 8. Profiles of density and temperature in the shock tube at t = 0.15 under Kn = 0.0001.

which yields∫
bL,REL,Rψdv = −

∫
(aL,R · v)EL,Rψdv. (44)

After the coefficients for spatial and time variations are determined, the interface fluxes for macroscopic variables can be 
obtained by taking moments over particle velocity space, i.e.,

FW
i+1/2, j =

∫
v
(

f L H(v · ni+1/2) + f R
(
1 − H(v · ni+1/2)

))
ψdv, (45)

where H is the Heaviside step function. Since the equilibrium state is based on Gaussian distribution, the above integral can 
be evaluated analytically. Remarkably, the above numerical method can be understood as a simplification of the gas-kinetic 
scheme [42,43].

5.3. Adaptation strategy

The Boltzmann and Navier-Stokes solvers can be combined to solve multi-scale flow problems efficiently with an adap-
tive continuous-discrete velocity transformation. The work paradigm is shown in Fig. 6. For a near-equilibrium flow region, 
the particle distribution function is formulated analytically from the Chapman-Enskog expansion. Therefore, only the macro-
scopic flow variables are needed to store and iterate by the Navier-Stokes solver in Eq. (36). For non-equilibrium flows, the 
solution algorithm allocates the localized velocity quadrature to track the evolution of the particle distribution function in 
Eq. (32).

A core task of the hybrid solver lies in the dynamic adaptation of time-varying flow regimes at different locations. At 
every time step tn , the spatial derivatives of the updated macroscopic variables are evaluated via ∇xW = (∇xWL +∇xWR)/2, 
where ∇xWL,R are the difference values between to neighboring cells. The collision time is evaluated by τ = μ/p. Therefore, 
the complete information needed for the neural network to predict the flow regime has been obtained. As shown in Fig. 6, 
12
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Fig. 9. Profiles of density and temperature in the shock tube at t = 0.15 under Kn = 0.001.

Fig. 10. Profiles of density and temperature in the shock tube at t = 0.15 under Kn = 0.01.

we have two types of cells, i.e. the non-equilibrium one holding discrete solution of the distribution function and the 
near-equilibrium one with Navier-Stokes variables, and three types of cell interfaces based on the flow regimes, i.e.,

• kinetic face: two neighboring cells are in a non-equilibrium flow regime;
• continuum face: two neighboring cells of the face are in near-equilibrium flow regime;
• adaptation face: two neighboring cells of the face lie in different flow regimes.

The solution algorithm in type 1/2 cells is straightforward following the section 5.1 and 5.2. At the adaptation face, both 
macroscopic and microscopic fluxes are evaluated to update the solutions in the left and right cells. This is uniformly done 
by computing the kinetic flux in Eq. (33), where its velocity moments result in macroscopic fluxes, i.e.,
13
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Fig. 11. Prediction of flow regimes from fully kinetic solutions at different time instants in the shear layer with different criteria (0 denotes near-equilibrium, 
1 denotes non-equilibrium).

FW =
∫

F f ψdv �
Nq∑

j

w jF jψ, (46)

where Nq is the number of quadrature points and w j the quadrature weights. To utilize the above equation, a local velocity 
mesh is generated within

v ∈
[
−|V0| − 4

√
RT0, |V0| + 4

√
RT0

]
, (47)

where {V0, T0} are reference velocity and temperature, and R is the gas constant. The velocity grid is chosen such that 
more than 99% of values of the Maxwellian distribution fall into its range. In a continuum cell at tn which has a discrete 
solution of distribution function at tn−1, the memory can be freed by deallocations in static languages, e.g., C and Fortran, 
and by setting to be None type in dynamic languages, e.g., Python and Julia. In a kinetic cell with no former record of 
the discretized distribution function, the solution is reconstructed from the Chapman-Enskog expansion in Eq. (12) in the 
continuum cell and then used for flux evaluation. This way, a hybrid continuum-kinetic solver has been set up, where no 
buffer zone is required to transit solutions.

6. Numerical experiments

In this section, we conduct numerical experiments of several multi-scale flow problems to validate the neural classifier 
and the corresponding adaptive solver. All the variables are nondimensionalized following the paradigm introduced in Sec. 2.

The hard-sphere gas model is employed in all cases. We choose the gradient-length-local Knudsen number KnGLL [6] as 
a reference and provide some quantitative comparisons to predict continuum breakdown. It is worth mentioning that we 
are not here to censure this methodology, but rather to choose a widely accepted criterion as a benchmark to point out 
potential possibilities of our new method. The computational resources of the hybrid solver can be found in [2].
14
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Fig. 12. Profiles of flow variables in the shear layer at t = τ .

Table 1
Computational setup of Sod shock tube problem.

t x Nx v Nu Nv Nw

[0,0.15] [0,1] 200 [−8,8]3 64 32 32

Quadrature Kn CFL Integrator Boundary
Rectangular [0.0001,0.01] 0.5 Euler Dirichlet

6.1. Sod shock tube

The first numerical experiment is the Sod shock tube, where the longitudinal processes dominate the flow motion in the 
one-dimensional Riemann problem. The particle distribution function is initialized as a Maxwellian, which corresponds to 
the following macroscopic variables⎛

⎝ ρ
U
T

⎞
⎠

t=0,L

=
⎛
⎝ 1

0
2

⎞
⎠ ,

⎛
⎝ ρ

U
T

⎞
⎠

t=0,R

=
⎛
⎝ 0.125

0
1.6

⎞
⎠ .

To test the capability of the current scheme to solve multi-scale flow problems, simulations are performed with different 
reference Knudsen numbers ranging in Kn = [0.0001, 0.01]. The detailed computation setup is listed in Table 1.

We first conduct a fully kinetic simulation with the Boltzmann equation. Based on the kinetic solution, the partition of 
flow regimes based on different criteria is shown in Fig. 7. The ground-truth regime is obtained from the L2 error between 
the particle distribution and its Chapman-Enskog reconstructed value in Eq. (15). It is clear that localized flow structures, 
including rarefaction wave, contact discontinuity, and shock wave, contribute as sources of non-equilibrium effects. In the 
remaining near-equilibrium regions the Chapman-Enskog expansion can approximate real particle distributions. With the 
increasing Knudsen number, the kinetic regime enlarges due to the increasing rarefied gas effect.
15
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Fig. 13. Profiles of flow variables in the shear layer at t = 10τ .

Table 2
Computational cost of the sod shock tube problem.

time total allocations total allocated memory

Navier-Stokes 1.39 s 2.16 × 107 1.82 GB
Kinetic 1649.02 s 1.65 × 108 7.35 TB
Adaptive (Kn=0.0001) 97.50 s 2.72 × 107 121.04 GB
Adaptive (Kn=0.001) 514.90 s 3.60 × 107 713.92 GB
Adaptive (Kn=0.01) 1209.60 s 9.88 × 107 3.88 TB

From the results, we can see that the gradient-length-local Knudsen number criterion underestimates the influence of 
wave structures and makes inaccurate predictions. On the contrary, the neural network predicts equivalent flow regimes 
as the benchmark. Then, we employ the adaptive solver to conduct complete simulations based on the criteria from the 
neural network and KnGLL . The profiles of density and temperature inside the shock tube at the time instant t = 0.15
under different Knudsen numbers are presented in Fig. 8, 9 and 10. The kinetic and Navier-Stokes solutions are plotted as 
a benchmark. As shown, although all the results are qualitatively similar, the zoom-in view demonstrates that the hybrid 
method based on KnGLL provides the Navier-Stokes solution, while the neural network method accurately predicts the local 
flow regime and recovers the Boltzmann solution. Therefore, we have a basis to believe that the neural network classifier 
works better than the KnGLL method in this case. At Kn = 0.01, the Chapman-Enskog expansion yields negative values in 
the particle distribution function where the spatial slopes are large, resulting in the failure of Navier-Stokes solutions. In 
this case, the inaccurate prediction of flow regimes from KnGLL results in unreasonable oscillations of macroscopic solutions, 
which is overcome by the neural network classifier.

Table 2 provides the computational cost of all these three solvers. As can be seen, the adaptive scheme accelerates the 
simulation significantly in the continuum and transition flow regimes, and reduce the memory load.
16
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Fig. 14. Profiles of flow variables in the shear layer at t = 50τ .

Table 3
Computational setup of shear layer problem.

t x Nx v Nu Nv Nw

[0,50τ0] [−0.5,0.5] 500 [−6,6]3 64 28 28

Quadrature Kn CFL Integrator Boundary
Rectangular 0.005 0.5 Euler Dirichlet

6.2. Shear layer

In the second numerical experiment, let us turn to a shear layer in the transition regime where the transverse processes 
dominate the fluid motion. The particle distribution function is initialized as Maxwellian, which corresponds to the following 
macroscopic variables,⎛

⎜⎜⎝
ρ
V x

V y

T

⎞
⎟⎟⎠

t=0,L

=

⎛
⎜⎜⎝

1
0
1
1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

ρ
V x

V y

T

⎞
⎟⎟⎠

t=0,R

=

⎛
⎜⎜⎝

1
0

−1
0.5

⎞
⎟⎟⎠ .

The simulation is performed till 50τ0, where τ0 = μ0/p0 denotes the mean collision time in the left half of the initial 
domain, and the viscosity μ0 can be evaluated from the hard-sphere model,

μ0 = 15
√

π

48
Kn.

The detailed computation setup is listed in Table 3.
17



Fig. 15. Particle distribution functions at the domain center at different time instants.

Fig. 16. Profiles of density and temperature in the cylinder flow under Kn = 0.001. (For interpretation of the colors in the figure(s), the reader is referred 
to the web version of this article.)

We first conduct a fully kinetic simulation with the Boltzmann equation. Based on the kinetic solution, the partition of 
flow regimes based on different criteria is shown in Fig. 11. With time evolution, it is clear that the non-equilibrium region 
expands due to the strong shearing effect. The neural network predicts equivalent flow regimes as ground truth, while the 
gradient-length-local Knudsen number criterion underestimates the non-equilibrium effect.

Then we employ the adaptive solver to conduct the simulation. The profiles of density, velocity, and temperature at 
different time instants are presented in Fig. 12, 13, and 14. The kinetic and Navier-Stokes solutions are plotted as a bench-
mark. As is shown, for this highly dissipative problem with a strong shearing effect, the kinetic and Navier-Stokes equations 
present distinct solutions. Fig. 15 presents the evolution of the particle distribution function at the domain center. Due to 
the accumulating effect of intermolecular collisions, the particle distribution function transforms gradually into Maxwellian 
from the initial bi-modal distribution. During the evolution process, the adaptive scheme provides equivalent solutions as 
T. Xiao, S. Schotthöfer and M. Frank Journal of Computational Physics 489 (2023) 112278
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Fig. 17. Profiles of density and temperature in the cylinder flow under Kn = 0.01.

Fig. 18. Solutions along the horizontal center line in front of the cylinder at Kn = 0.001.

Table 4
Computational cost of shear layer problem.

time total allocations total allocated memory

Navier-Stokes 11.07 s 7.87 × 107 5.63 GB
Kinetic 1985.34 s 4.00 × 108 15.39 TB
Adaptive 623.05 s 1.35 × 108 1.36 TB
19



Fig. 19. Solutions along the horizontal central line in front of the cylinder at Kn = 0.01.

Table 5
Computational setup of flow around a circular cylinder.

r Nr θ Nθ v Nu Nv

[1,6] 60 [0,π ] 50 [−10,10]3 48 48

Nw Quadrature Kn CFL Integrator Wall Edge
32 Rectangular [0.001,0.01] 0.5 Euler Maxwell Symmetry

the kinetic benchmark, which confirms the validity of the neural network classifier. Table 4 provides the computational cost 
of all these three solvers. As can be seen, the adaptive scheme accelerates the simulation by 69% and saves 66% unnecessary 
allocations.

6.3. Flow around circular cylinder

In the last numerical experiment, we present the two-dimensional hypersonic flow around a circular cylinder, where 
longitudinal and transverse processes coexist in the domain. The particle distribution function is initialized as Maxwellian 
everywhere corresponding to the Mach number Ma = 5. The detailed computation setup is listed in Table 5.

In this steady-state problem, the computation can be accelerated with the help of the NS solver. A convergent coarse 
flow field can be first obtained by the NS solver, and then reconstructed as the initial state in the subsequent adaptive 
method. The workflow for the computation of steady flow is described as follows.

Fig. 16 and 17 present the contours of U-velocity and temperature produced by the adaptive solver at Kn = 0.001 and 
0.01. As shown, the bow shock and the expansion cooling region behind the cylinder are well captured. Fig. 18 and 19
present the quantitative comparison of solutions produced by the kinetic, NS, and the current adaptive solver respectively. 
At Kn = 0.001, the cell size and time step in the computation are much larger than the particle mean free path and collision 
time, and all three methods deduce to the shock-capturing scheme. When the reference Knudsen number gets to Kn = 0.01, 
a larger particle mean free path leads to a wide shock structure. Due to the non-equilibrium gas dynamics in the shock 
T. Xiao, S. Schotthöfer and M. Frank Journal of Computational Physics 489 (2023) 112278
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Fig. 20. Prediction of flow regimes at convergent state in the circular cylinder flow with different criteria under Kn = 0.001 (0 denotes near-equilibrium, 
1 denotes non-equilibrium).

Fig. 21. Prediction of flow regimes at convergent state in the circular cylinder flow with different criteria under Kn = 0.01 (0 denotes near-equilibrium, 
1 denotes non-equilibrium).
21
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Algorithm 3: Workflow of steady flow problems.

Converge the flow-field with the Navier-Stokes solver
Classify cell-wise the flow-regimes
Reconstruct the solution of kinetic cells
Converge the flow-field with the adaptive solver

Table 6
Nomenclature.

Kn Knudsen number
f particle distribution function
Q collision operator in the Boltzmann equation
ψ collision invariants
M Maxwellian distribution function
k Boltzmann constant
W macroscopic conservative variables
ρ density
V bulk velocity
T temperature
R gas constant
μ viscosity coefficient
κ heat conductivity coefficient
c peculiar velocity
I identity tensor
ω power index of hard-sphere model
θ parameters of neural network
U input of neural network
R̂ output of neural network
R ground-truth label
L loss function
F sampling space of f
u moment variables
m moment basis
α Lagrange multipliers of dual problem
R realizable set of u
H Hessian of the dual problem
n unit normal vector
H Heaviside step function
�i(x) control volume of physical space
� j(v) control volume of velocity space
F numerical flux
S surface area
E equilibrium distribution function
a spatial derivatives of particle distribution function
b time derivatives of particle distribution function

wave and gas-surface interaction, a slight difference can be observed in the solutions provided by kinetic and NS solvers, 
where the continuum scheme provides a narrower shock profile than the kinetic solution. The current adaptive method 
provides equivalent solutions as the kinetic benchmark, which confirms the validity of the neural network classifier in a 
two-dimensional case. Based on the convergent solution, the partition of flow regimes based on different criteria is shown 
in Fig. 20 and 21. Note that different critical values C are tested for the gradient-length-local Knudsen number. For the 
commonly adopted value C = 0.05, KnGLL underestimates the non-equilibrium effect and makes inaccurate predictions. 
After we reset it as C = 0.01, the predictions are still not precise enough. On the contrary, the neural network predicts more 
accurate flow regimes as the benchmark under different Knudsen numbers.

7. Conclusion

Gaseous flow is intrinsically a cross-scale problem due to the possible large variations of density and local Knudsen 
number. A quantitative criterion of continuum breakdown is crucial for developing sound flow theories and multi-scale 
solution algorithms. In this paper, we have built the first neural network for the binary classification of near-equilibrium 
and non-equilibrium flow regimes. This data-driven surrogate model provides an alternative to classical semi-empirical 
criteria and shows superiority in numerical experiments. Based on the minimal entropy closure of the Boltzmann moment 
system, an algorithmic strategy is designed to generate a dataset with a balanced distribution near and out of equilibrium 
state for model training and testing. A hybrid Boltzmann-Navier-Stokes flow solver is developed, which can dynamically 
adapt to local flow regimes using the neural network classifier. The current method provides an accurate and efficient tool 
for the study of cross-scale and non-equilibrium flow phenomena. It shows the potential to be extended to other complex 
systems, such as multi-component flows [44] and plasma physics [45].
22



T. Xiao, S. Schotthöfer and M. Frank Journal of Computational Physics 489 (2023) 112278
CRediT authorship contribution statement

Tianbai Xiao: Conceptualization, Formal analysis, Funding acquisition, Investigation, Methodology, Project administration, 
Resources, Software, Visualization, Writing – original draft, Writing – review & editing. Steffen Schotthöfer: Conceptual-
ization, Formal analysis, Investigation, Methodology, Resources, Software, Visualization, Writing – original draft, Writing – 
review & editing. Martin Frank: Conceptualization, Formal analysis, Funding acquisition, Methodology, Project administra-
tion, Resources, Supervision, Writing – review & editing.

Declaration of competing interest

The authors declare that there is no conflict of interest to this work.

Data availability

Data will be made available on request.

References

[1] Jonas Kusch, Steffen Schotthöfer, Pia Stammer, Jannick Wolters, Tianbai Xiao, Kit-rt: An Extendable Framework for Radiative Transfer and Therapy, 2022.
[2] Tianbai Xiao, Kinetic.jl: a portable finite volume toolbox for scientific and neural computing, J. Open Sour. Softw. 6 (62) (2021) 3060.
[3] Hsue-Shen Tsien, Superaerodynamics, mechanics of rarefied gases, J. Aeronaut. Sci. 13 (12) (1946) 653–664.
[4] Sydney Chapman, Thomas George Cowling, David Burnett, The Mathematical Theory of Non-uniform Gases: an Account of the Kinetic Theory of 

Viscosity, Thermal Conduction and Diffusion in Gases, Cambridge University Press, 1990.
[5] Graeme Austin Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Clarendon, 1994.
[6] Iain D. Boyd, Gang Chen, Graham V. Candler, Predicting failure of the continuum fluid equations in transitional hypersonic flows, Phys. Fluids 7 (1) 

(1995) 210–219.
[7] Quanhua Sun, Iain D. Boyd, Graham V. Candler, A hybrid continuum/particle approach for modeling subsonic, rarefied gas flows, J. Comput. Phys. 

194 (1) (2004) 256–277.
[8] Alejandro L. Garcia, Berni J. Alder, Generation of the Chapman–Enskog distribution, J. Comput. Phys. 140 (1) (1998) 66–70.
[9] C. David Levermore, William J. Morokoff, B.T. Nadiga, Moment realizability and the validity of the Navier–Stokes equations for rarefied gas dynamics, 

Phys. Fluids 10 (12) (1998) 3214–3226.
[10] Maziar Raissi, Alireza Yazdani, George Em Karniadakis, Hidden fluid mechanics: learning velocity and pressure fields from flow visualizations, Science 

367 (6481) (2020) 1026–1030.
[11] Yingzhou Li, Jianfeng Lu, Anqi Mao, Variational training of neural network approximations of solution maps for physical models, J. Comput. Phys. 409 

(2020) 109338.
[12] Yuehaw Khoo, Lexing Ying, Switchnet: a neural network model for forward and inverse scattering problems, SIAM J. Sci. Comput. 41 (5) (2019) 

A3182–A3201.
[13] Maziar Raissi, Paris Perdikaris, George E. Karniadakis, Physics-informed neural networks: a deep learning framework for solving forward and inverse 

problems involving nonlinear partial differential equations, J. Comput. Phys. 378 (2019) 686–707.
[14] Zhiping Mao, Ameya D. Jagtap, George Em Karniadakis, Physics-informed neural networks for high-speed flows, Comput. Methods Appl. Mech. Eng. 

360 (2020) 112789.
[15] Luning Sun, Han Gao, Shaowu Pan, Jian-Xun Wang, Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation 

data, Comput. Methods Appl. Mech. Eng. 361 (2020) 112732.
[16] Steven L. Brunton, Joshua L. Proctor, J. Nathan Kutz, Discovering governing equations from data by sparse identification of nonlinear dynamical systems, 

Proc. Natl. Acad. Sci. USA 113 (15) (2016) 3932–3937.
[17] Samuel H. Rudy, Steven L. Brunton, Joshua L. Proctor, J. Nathan Kutz, Data-driven discovery of partial differential equations, Sci. Adv. 3 (4) (2017) 

e1602614.
[18] Jun Zhang, Wenjun Ma, Data-driven discovery of governing equations for fluid dynamics based on molecular simulation, J. Fluid Mech. 892 (2020).
[19] Tianbai Xiao, Martin Frank, Using neural networks to accelerate the solution of the Boltzmann equation, J. Comput. Phys. (2021) 110521.
[20] Steffen Schotthöfer, Tianbai Xiao, Martin Frank, Cory D. Hauck, A structure-preserving surrogate model for the closure of the moment system of the 

Boltzmann equation using convex deep neural networks, arXiv preprint, arXiv:2106 .09445, 2021.
[21] Qin Lou, Xuhui Meng, George Em Karniadakis, Physics-informed neural networks for solving forward and inverse flow problems via the Boltzmann-bgk 

formulation, J. Comput. Phys. (2021) 110676.
[22] François Bouchut, François Golse, Mario Pulvirenti, Kinetic Equations and Asymptotic Theory, Elsevier, 2000.
[23] C. Levermore, Moment closure hierarchies for kinetic theories, J. Stat. Phys. 83 (1996) 1021–1065.
[24] N. Mikhail Kogan, Rarefied Gas Dynamics, Plenum Press, 1969.
[25] Balázs Csanád Csáji, et al., Approximation with artificial neural networks, Fac. Sci., Etvs Lornd Univ., Hungary 24 (48) (2001) 7.
[26] Louis De Branges, The Stone-Weierstrass theorem, Proc. Am. Math. Soc. 10 (5) (1959) 822–824.
[27] Steffen Schotthöfer, Tianbai Xiao, Martin Frank, Cory Hauck, Structure preserving neural networks: a case study in the entropy closure of the Boltzmann 

equation, in: Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, Sivan Sabato (Eds.), Proceedings of the 39th International 
Conference on Machine Learning, in: Proceedings of Machine Learning Research, vol. 162, PMLR, 17–23 Jul 2022, pp. 19406–19433.

[28] Steffen Schotthöfer, Tianbai Xiao, Martin Frank, Cory D. Hauck, A Structure-Preserving Surrogate Model for the Closure of the Moment System of the 
Boltzmann Equation Using Convex Deep Neural Networks, 2021.

[29] Michael Junk, Andreas Unterreiter, Maximum entropy moment systems and Galilean invariance, Contin. Mech. Thermodyn. 14 (2002) 563–576.
[30] Michael Junk, Maximum entropy for reduced moment problems, Math. Models Methods Appl. Sci. 10 (07) (2000) 1001–1025.
[31] C. Hauck, C.D. Levermore, A. Tits, Convex duality and entropy-based moment closures: characterizing degenerate densities, in: 2008 47th IEEE Confer-

ence on Decision and Control, 2008, pp. 5092–5097.
[32] C. David Levermore, Entropy-based moment closures for kinetic equations, Transp. Theory Stat. Phys. 26 (4–5) (1997) 591–606.
[33] Raul E. Curto, Lawrence A. Fialkow, Recursiveness, positivity, and truncated moment problems, Houst. J. Math. 17 (4) (1991) 603–635.
[34] Michael Junk, Domain of definition of Levermore’s five-moment system, J. Stat. Phys. 93 (5–6) (December 1998) 1143–1167.
23

http://refhub.elsevier.com/S0021-9991(23)00373-X/bib32C9D83A8141EDB47D9DF42361EEDC70s1
http://refhub.elsevier.com/S0021-9991(23)00373-X/bib32DD58F4D9EECFADACA13885B66BB033s1
http://refhub.elsevier.com/S0021-9991(23)00373-X/bib0ED863562D8C21D9D327E1E8928AA5ECs1
http://refhub.elsevier.com/S0021-9991(23)00373-X/bibA488AE1C379D31EA4C9F11C3E9A83AE5s1
http://refhub.elsevier.com/S0021-9991(23)00373-X/bibA488AE1C379D31EA4C9F11C3E9A83AE5s1
http://refhub.elsevier.com/S0021-9991(23)00373-X/bib5C33C0FCDB101A80B27B403C42686575s1
http://refhub.elsevier.com/S0021-9991(23)00373-X/bibA53A092F90C59A57E31B37CC12B1143Bs1
http://refhub.elsevier.com/S0021-9991(23)00373-X/bibA53A092F90C59A57E31B37CC12B1143Bs1
http://refhub.elsevier.com/S0021-9991(23)00373-X/bibA08BE0256B84A475A348DBCC1341F696s1
http://refhub.elsevier.com/S0021-9991(23)00373-X/bibA08BE0256B84A475A348DBCC1341F696s1
http://refhub.elsevier.com/S0021-9991(23)00373-X/bib63CEA41A9F9CCDA40D7946F63BDD642Fs1
http://refhub.elsevier.com/S0021-9991(23)00373-X/bibA2256856BC36CFD441AF116210F25D43s1
http://refhub.elsevier.com/S0021-9991(23)00373-X/bibA2256856BC36CFD441AF116210F25D43s1
http://refhub.elsevier.com/S0021-9991(23)00373-X/bib2FD7A5A76418B7DA6CCBFD0A1C2A7D81s1
http://refhub.elsevier.com/S0021-9991(23)00373-X/bib2FD7A5A76418B7DA6CCBFD0A1C2A7D81s1
http://refhub.elsevier.com/S0021-9991(23)00373-X/bibD2167CB645D672310311E85349D88B2Ds1
http://refhub.elsevier.com/S0021-9991(23)00373-X/bibD2167CB645D672310311E85349D88B2Ds1
http://refhub.elsevier.com/S0021-9991(23)00373-X/bib659B5A388D5282F74FA24FF2C333B13Ds1
http://refhub.elsevier.com/S0021-9991(23)00373-X/bib659B5A388D5282F74FA24FF2C333B13Ds1
http://refhub.elsevier.com/S0021-9991(23)00373-X/bib53EF7BEEFFBCC434AC4215FA1276D943s1
http://refhub.elsevier.com/S0021-9991(23)00373-X/bib53EF7BEEFFBCC434AC4215FA1276D943s1
http://refhub.elsevier.com/S0021-9991(23)00373-X/bibB9C5E91ADF5AE9A40614D2E0BA926475s1
http://refhub.elsevier.com/S0021-9991(23)00373-X/bibB9C5E91ADF5AE9A40614D2E0BA926475s1
http://refhub.elsevier.com/S0021-9991(23)00373-X/bib18CC3FD06F9626CCA249F5214AC12E03s1
http://refhub.elsevier.com/S0021-9991(23)00373-X/bib18CC3FD06F9626CCA249F5214AC12E03s1
http://refhub.elsevier.com/S0021-9991(23)00373-X/bib79BA2CB7E9FE73186B887E1C6A43315Bs1
http://refhub.elsevier.com/S0021-9991(23)00373-X/bib79BA2CB7E9FE73186B887E1C6A43315Bs1
http://refhub.elsevier.com/S0021-9991(23)00373-X/bibE0133828B67F5593D7CF05E6B4894F9Fs1
http://refhub.elsevier.com/S0021-9991(23)00373-X/bibE0133828B67F5593D7CF05E6B4894F9Fs1
http://refhub.elsevier.com/S0021-9991(23)00373-X/bib50594A9CF84B93D2345B33950ECDE740s1
http://refhub.elsevier.com/S0021-9991(23)00373-X/bibF285499D9E768A1F8926E7FEEBC58637s1
http://refhub.elsevier.com/S0021-9991(23)00373-X/bibB29A0DA8290DC82CC795F325BA0C6251s1
http://refhub.elsevier.com/S0021-9991(23)00373-X/bibB29A0DA8290DC82CC795F325BA0C6251s1
http://refhub.elsevier.com/S0021-9991(23)00373-X/bibE8461729A2533A2B25D0CA61CC51F7C7s1
http://refhub.elsevier.com/S0021-9991(23)00373-X/bibE8461729A2533A2B25D0CA61CC51F7C7s1
http://refhub.elsevier.com/S0021-9991(23)00373-X/bib698009E912EDF088FCA9818F172C56C8s1
http://refhub.elsevier.com/S0021-9991(23)00373-X/bib1978A6067C3B6D7382E19BAAA6BDB24Bs1
http://refhub.elsevier.com/S0021-9991(23)00373-X/bib2E6DAA7A1926BB9F06B96B26DF1B0A9Ds1
http://refhub.elsevier.com/S0021-9991(23)00373-X/bib83C94DE88C711F7331E6B7F37F866BF2s1
http://refhub.elsevier.com/S0021-9991(23)00373-X/bib0814E54D9DF4B2C448C833C79CBCD4E0s1
http://refhub.elsevier.com/S0021-9991(23)00373-X/bib0258E1346E5AB31CB66F0F76FB004021s1
http://refhub.elsevier.com/S0021-9991(23)00373-X/bib0258E1346E5AB31CB66F0F76FB004021s1
http://refhub.elsevier.com/S0021-9991(23)00373-X/bib0258E1346E5AB31CB66F0F76FB004021s1
http://refhub.elsevier.com/S0021-9991(23)00373-X/bib0DDA93AAEC5F13200E0F2FFAB56DAE76s1
http://refhub.elsevier.com/S0021-9991(23)00373-X/bib0DDA93AAEC5F13200E0F2FFAB56DAE76s1
http://refhub.elsevier.com/S0021-9991(23)00373-X/bib15AD21AF1A840B14F6EA8BD2E42537F2s1
http://refhub.elsevier.com/S0021-9991(23)00373-X/bib701D465A1C23AE4190EFA02F62FA25DBs1
http://refhub.elsevier.com/S0021-9991(23)00373-X/bibE441C989EA0355E22ED415028300D756s1
http://refhub.elsevier.com/S0021-9991(23)00373-X/bibE441C989EA0355E22ED415028300D756s1
http://refhub.elsevier.com/S0021-9991(23)00373-X/bib2E203D15148D53E500C282A53253FBD7s1
http://refhub.elsevier.com/S0021-9991(23)00373-X/bib719595FBC1D4BF79F89A11A1BC0860E0s1
http://refhub.elsevier.com/S0021-9991(23)00373-X/bib50A16F415160A7132A86A551FC34BDC9s1


T. Xiao, S. Schotthöfer and M. Frank Journal of Computational Physics 489 (2023) 112278
[35] V. Pavan, General entropic approximations for canonical systems described by kinetic equations, J. Stat. Phys. 142 (2011) 792–827.
[36] Steffen Schotthöfer, Tianbai Xiao, Martin Frank, Cory D. Hauck, Neural network-based, structure-preserving entropy closures for the Boltzmann moment 

system, arXiv preprint, arXiv:2201.10364, 2021.
[37] Clément Mouhot, Lorenzo Pareschi, Fast algorithms for computing the Boltzmann collision operator, Math. Comput. 75 (256) (2006) 1833–1852.
[38] Prabhu Lal Bhatnagar, Eugene P. Gross, Max Krook, A model for collision processes in gases. I. Small amplitude processes in charged and neutral 

one-component systems, Phys. Rev. 94 (3) (1954) 511.
[39] E.M. Shakhov, Generalization of the Krook kinetic relaxation equation, Fluid Dyn. 3 (5) (1968) 95–96.
[40] H. Lowell Holway Jr., New statistical models for kinetic theory: methods of construction, Phys. Fluids (1958–1988) 9 (9) (1966) 1658–1673.
[41] Taku Ohwada, Kun Xu, The kinetic scheme for the full-Burnett equations, J. Comput. Phys. 201 (1) (2004) 315–332.
[42] Kun Xu, Direct Modeling for Computational Fluid Dynamics: Construction and Application of Unified Gas-Kinetic Schemes, World Scientific, 2015.
[43] Tianbai Xiao, Chang Liu, Kun Xu, Qingdong Cai, A velocity-space adaptive unified gas kinetic scheme for continuum and rarefied flows, J. Comput. Phys. 

415 (2020) 109535.
[44] Tianbai Xiao, Kun Xu, Qingdong Cai, A unified gas-kinetic scheme for multiscale and multicomponent flow transport, Appl. Math. Mech. 40 (3) (2019) 

355–372.
[45] Tianbai Xiao, Martin Frank, A stochastic kinetic scheme for multi-scale plasma transport with uncertainty quantification, J. Comput. Phys. 432 (2021) 

110139.
24

http://refhub.elsevier.com/S0021-9991(23)00373-X/bib394DC832691B083B97152B506E698206s1
http://refhub.elsevier.com/S0021-9991(23)00373-X/bib90448550E15A275FAFC51CBF771C6AC2s1
http://refhub.elsevier.com/S0021-9991(23)00373-X/bib90448550E15A275FAFC51CBF771C6AC2s1
http://refhub.elsevier.com/S0021-9991(23)00373-X/bibEBABE857593B725B6833EC736815F4C2s1
http://refhub.elsevier.com/S0021-9991(23)00373-X/bib534521E2C33D70310023096B3EE27E3Es1
http://refhub.elsevier.com/S0021-9991(23)00373-X/bib534521E2C33D70310023096B3EE27E3Es1
http://refhub.elsevier.com/S0021-9991(23)00373-X/bib981B30880BC69B8169235B11A9C8D5BDs1
http://refhub.elsevier.com/S0021-9991(23)00373-X/bibE8F73C10CD4EC39906BCCD3AA37F7C61s1
http://refhub.elsevier.com/S0021-9991(23)00373-X/bib50E1E96FC5B14A18B90F6DC0D688ECB5s1
http://refhub.elsevier.com/S0021-9991(23)00373-X/bibDB23B56DC38A3F9AA5F05090E3ABC46As1
http://refhub.elsevier.com/S0021-9991(23)00373-X/bibA902923D2D2C17DADF614303E12BA76As1
http://refhub.elsevier.com/S0021-9991(23)00373-X/bibA902923D2D2C17DADF614303E12BA76As1
http://refhub.elsevier.com/S0021-9991(23)00373-X/bibE54C78E607A0644E23C2B67B3553CDAEs1
http://refhub.elsevier.com/S0021-9991(23)00373-X/bibE54C78E607A0644E23C2B67B3553CDAEs1
http://refhub.elsevier.com/S0021-9991(23)00373-X/bib3ABCAA2C2FB709DBA3670C26E7BBA8ECs1
http://refhub.elsevier.com/S0021-9991(23)00373-X/bib3ABCAA2C2FB709DBA3670C26E7BBA8ECs1

	Predicting continuum breakdown with deep neural networks
	1 Introduction
	2 Kinetic theory
	3 Neural network based classification of the flow regime
	4 Data generation
	4.1 Sampling of particle distribution functions
	4.2 Assembly of the training data

	5 Solution algorithm
	5.1 Kinetic solver
	5.2 Navier-Stokes solver
	5.3 Adaptation strategy

	6 Numerical experiments
	6.1 Sod shock tube
	6.2 Shear layer
	6.3 Flow around circular cylinder

	7 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References


