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Abstract
The study of uncertainty propagation poses a great challenge to design high fidelity numeri-
cal methods. Based on the stochastic Galerkin formulation, this paper addresses the idea and
implementation of the first flux reconstruction scheme for hyperbolic conservation laws with
random inputs. High-order numerical approximation is adopted simultaneously in physical
and random space, i.e., the modal representation of solutions is based on an orthogonal poly-
nomial basis and the nodal representation is based on solution collocation points. Therefore,
the numerical behaviors of the scheme in the (physical-random) phase space can be designed
and understood uniformly. A family of filters is developed in multi-dimensional cases to
mitigate the Gibbs phenomenon arising from discontinuities in both physical and random
space. The filter function is switched on and off by the dynamic detection of discontinuous
solutions, and a slope limiter is employed to preserve the positivity of physically realizable
solutions. As a result, the proposed method is able to capture the stochastic flow evolution
where resolved and unresolved regions coexist. Numerical experiments including a wave
propagation, a Burgers’ shock, a one-dimensional Riemann problem, and a two-dimensional
shock-vortex interaction problem are presented to validate the current scheme. The order of
convergence of the high-order scheme is identified. The capability of the scheme for simu-
lating smooth and discontinuous stochastic flow dynamics is demonstrated. The open-source
codes to reproduce the numerical results are available under the MIT license (Xiao et al. in
FRSG: stochastic Galerkin method with flux reconstruction. https://github.com/CSMMLab/
FRSG, (2021). https://doi.org/10.5281/zenodo.5588317).
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1 Introduction

The burgeoning research in uncertainty quantification (UQ) has facilitated applications in
meteorology, particle physics, chemistry, bioinformatics, etc. [49]. In this paper, we focus on
the propagation of randomness in stochastic hyperbolic conservation laws, i.e.,

∂tu(t, x, z) + ∇ · f(u(t, x, z)) = 0, t ∈ (0, T ], x ∈ Ω, z ∈ Υ ,

B(u) = 0, t ∈ (0, T ], x ∈ ∂Ω, z ∈ Υ ,

u(0, x, z) = u0, x ∈ Ω, z ∈ Υ ,

(1)

where u denotes the conservative variables, f is the flux function, T ∈ R
+ is the evolution

time,Ω ⊂ R
d is the physical space of dimension d ,Υ ⊂ R

l is the random space of dimension
l, and B is the boundary operator.

The stochastic Galerkin (SG) method has been successfully applied to solve the hyper-
bolic equations with random inputs. Compared with sampling-based methodologies, e.g., the
Monte Carlo method and its variants [24], the SGmethod works in an intrusive way such that
the original governing system in Eq. (1) is reformulated. Specifically, a set of generalized
polynomial chaos (gPC) with respect to random variables is introduced, and the stochastic
solution is approximated by the sum of the products between each modal coefficient and the
corresponding orthogonal polynomial basis. Such an approach is generally referred to as the
modal approximation. In contrast, the nodal approach directly employs collocation points
in random space and fits the stochastic solution using interpolating polynomials, e.g., the
Lagrange polynomials. As the residual of the governing equations is orthogonal to the linear
space spanned by the polynomial chaos, the spectral convergence can be achieved provided
that the solution depends smoothly on the random parameters [67].

Most stochastic Galerkin methods that have been applied to solve Eq. (1) employ finite
difference or finite volume methods to discretize the gPC coefficients [27, 29, 30, 35, 44,
48, 60, 64]. Although this has proven to be an effective strategy, the different discretization
strategies, i.e., the finite difference in physical space and the spectral representation in random
space, make it indirect to understand the behavior of the numerical scheme in a uniform way.
Most of the above methods hold no more than second order of accuracy. It has been noted in
[41, 43] that the spatial discretization has significant effects on the solution quality in random
space. The diffusive behavior of low-order methods can heavily smear out the solution.While
it is possible to develop higher-order methods based on the finite difference or finite volume
framework, the lack of ability to handle irregular geometry in the finite differencemethod and
the non-compact stencils used in the traditional finite volumemethod prevent such extensions
from being universally applicable [59].

The inherited high resolution and low dissipation of higher-order computational methods
enable high-fidelity simulation of intricate flows in turbulence, acoustics and magnetohy-
drodynamics [3]. It motivates a unified spectral discretization for the stochastic Galerkin
system, which leads to compatible accuracy in stochastic and spatial domain. This has been
realized in [50, 68] for stochastic Navier-Stokes equations. However, in a hyperbolic sys-
tem, discontinuous solutions can emerge from a smooth initial field, and the well-known
Gibbs phenomenon brings tremendous challenges for spectral methods to capture the dis-
continuities in both physical and random space. To the best of the authors’ knowledge, only
a few research groups have addressed this issue following the discontinuous Galerkin (DG)
approach [10, 25]. Dürrwächter et. al. [18, 19] developed a discontinuous stochastic Galerkin
method for stochastic fluid dynamic equations. Donoghue and Yano [17] proposed a similar
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methodology, while the focus is on the adaptive refinement of spatial mesh or polynomial
chaos to control the numerical error.

The success of DG methods is attributed to the unified consideration of the spatial
discretization and the spectral decomposition.Within each element, the solutions are approx-
imated by polynomials and are allowed to be discontinuous across cell boundaries, which
encourages the capturing of sharp structures that arise in hyperbolic systems. Based on sim-
ilar views, the flux reconstruction (FR) approach proposed by Huynh et al. [28, 57] provides
profound insight into constructing high-order methods for transport equations. It establishes
a universal framework, where several existing approaches, including the nodal DG and the
spectral difference (SD) [33, 39] methods, can be cast within by choosing different correc-
tion fields of Lagrange polynomials. The intrinsic connections between FR and DG or SD
methods have been analyzed in [11, 14].

It is desirable to design the solution algorithm that equips consistent accuracy in time,
space, and random domain for stochastic conservation laws. In this paper, we employ the
flux reconstruction methodology as building blocks and develop the high-order stochastic
Galerkin method for hyperbolic conservation laws. A family of multi-dimensional filters is
developed to mitigate the oscillating solutions around discontinuities in the physical-random
space. The filter function is dynamically dispatched based on a detector of discontinuous solu-
tions to optimize the numerical dissipation. A slope limiter is applied to the nodal solutions
to ensure the positivity of physically realizable solutions (e.g., the density and temperature
in the Euler equations). The proposed algorithm can be understood uniformly as a spectral
methodwithinmodal expansions and as a collocationmethod upon nodal solution points. The
discontinuity capturing strategy is naturally incorporated into the solution algorithm based
on the nodal-modal transformation. As a result, the proposed method is able to capture the
stochastic fluid dynamics where resolved and unresolved regions coexist inside a flow field.

The rest of the paper is structured as follows. Section 2 introduces the generalized polyno-
mial chaos and stochastic Galerkin formulation of hyperbolic conservation laws. Section 3
presents the implementation of the flux reconstruction framework. Section 4 expounds the
strategy for capturing discontinuous solutions using filters. Section 5 includes the numerical
experiments to demonstrate the performance of the new scheme. The paper ends with a short
conclusion. Table 13 provides the nomenclature in this paper. The source codes to produce
the numerical results are hosted on GitHub and distributed under the MIT license [65].

2 Stochastic Galerkin Method

2.1 Formulation

The stochastic Galerkin method employs the generalized polynomial chaos (gPC) expansion
to describe the evolution of stochastic solutions. Defining the gPC polynomials up to degree
Nc as Φk : Υ → R where |k| ≤ Nc, a spectral representation of degree Nc is introduced in
the random space as

u(t, x, z) � uNc (t, x, z) =
Nc∑

|k|=0

ûk(t, x)Φk(z) = v̂(t, x)Φ(z). (2)

Here, ûk = (û1k, û2k, · · · , ûSk)T are the expansion coefficients of conservative variables in
the polynomial chaos, and can also be called moments of the stochastic Galerkin system.
The number of states in the solution vector is equal to S, which takes unit value for scalar
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conservation laws. The index k can be a scalar or a l-dimensional vector k = (k1, k2, · · · , kl)T

with |k| = k1 + k2 + · · · + kl . The matrix v̂ = {ûk, |k| ≤ Nc} denotes a collection of the
gPC coefficients at all orders.

The orthogonal polynomial basis Φ satisfies the following constraints,

E[Φ j (z)Φk(z)] = δ jk, 0 ≤ | j |, |k| ≤ Nc. (3)

The expected value defines a scalar product,

E[Φ j (z)Φk(z)] =
∫

Υ

Φ j (z)Φk(z)�(z)dz, (4)

where �(z) : Υ → [0,∞) is the probability density function. In practice, the above integral
can be evaluated analytically or with the help of a numerical Nq -point quadrature rule, i.e.,

E[Φ j (z)Φk(z)] =
Nq∑

q=1

Φ j (zq)Φk(zq)w(zq), (5)

where w(zq) is the corresponding quadrature weight function in random space. In the fol-
lowing we adopt a uniform notation E[Φ j (z)Φk(z)] = 〈Φ jΦk〉 to denote the integrals over
random space from Eq. (4) and (5).

Plugging Eq. (2) into Eq. (1) and projecting the resulting residuals to zero in the space
spannedby the gPCbasis,weget the conservation laws in the stochasticGalerkin formulation,

∂t ûk + 〈∇ · f
(
uNc

)
Φk〉 = 0, t ∈ (0, T ], x ∈ Ω,

〈B(uNc )Φk〉 = 0, t ∈ (0, T ], x ∈ ∂Ω,

ûk(t = 0, x) = 〈u0(x, z)Φk〉, x ∈ Ω.

(6)

The stochastic Galerkin approach provides a desirable accuracy for the smooth solution in
random space, where the residual of the governing equations is orthogonal to the linear space
spanned by the gPC polynomials [67].

2.2 Challenge

While the stochastic Galerkin method has been successfully applied to various settings,
its application in hyperbolic problems faces two main challenges. First, the SG system for
the gPC coefficients in Eq. (6) is not necessarily hyperbolic, leading to a possible break-
down of the numerical method [1, 45]. Strategies to preserve hyperbolicity of the SG system
include the intrusive polynomial moment (IPM) method [15, 45], the Roe transformation
method [22, 23, 44], the operator splittingmethod [8, 9], the corrective reconstructionmethod
[12, 13], and the hybrid stochastic Galerkin-collocation method [70]. Moreover, a so-called
hyperbolicity-preserving limiter has been proposed [18, 48] which guarantees the realizabil-
ity of the solution. That is, the limiter enforces positive density, pressure and energy. The
IPM method is a generalization of stochastic Galerkin, which performs the gPC expansion
on the entropy variables instead of the original conservative variables. Similarly, the Roe
transformation method performs the expansion on the Roe variables. The hyperbolicity-
preserving SG method employs a bound-preserving limiter to enforce positive moments of
thermodynamic variables.

The second challenge is that themodal approximation suffers from theGibbs phenomenon
when the solution exhibits sharp gradients [38]. Strategies to mitigate spurious artifacts
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from the Gibbs phenomenon in the random space have recently been developed. The multi-
element SG method [53, 58] utilizes h-refinement in the random space, which is less prone
to oscillations. The filtered SG and IPM methods are proposed in [2, 35], where a filtering
step is applied to the solution in between time steps. In addition, stochastic adaptivity [4, 37,
40, 54] can be employed to increase the truncation order in oscillatory regions. For the IPM
method, certain choices of the entropymitigate oscillations [34]. It is a natural idea to combine
different strategies for a better control of the numerical accuracy. As an example, in [36] the
multi-element approach is extended to IPM and a filter step is performed after applying the
bound-preserving limiter, which reduces the oscillations while maintaining realizability. A
strategy of picking a sufficiently strong filter strength to preserve physical bounds of the
solution is proposed in [63].

An important property of numerical methods for uncertainty quantification is the physical
realizablity (e.g., the positivity of certain thermodynamic variables). It is desirable to consider
the realizability andmitigation of theGibbs phenomenon uniformly in the solution algorithm.
In this paper, we will develop the multi-dimensional filter and limiter respectively that can
mitigate spurious artifacts from the Gibbs phenomenon in both physical and random space
and ensure the realizability of physical solutions. The detailed strategy will be illustrated in
Sect. 4.

3 Flux Reconstruction Framework

3.1 Formulation

Considering Nx non-overlapping cells in the domain Ω = ⋃Nx
i=1 Ω i , we approximate the

solution of the conservation laws with piecewise polynomials, i.e.,

u ≈
Nx⊕

i=1

v̂iΦ, f ≈
Nx⊕

i=1

f̂ iΦ. (7)

For convenience, the standard element in the reference space can be introduced based on
the transformation of coordinates,

xi = Θ i (r) =
Nv∑

j=1

χ j (r)xi, j , (8)

where {x, r} represent the global and local coordinates of a point in the elementΩ i . These two
coordinates can be connected by the vertex coordinates χ j , which are built upon Nv vertices
and their global coordinates xi, j . For elements of different shapes, the vertex coordinates
take different forms, e.g.,

χ1 = 1 − r

2
, χ2 = 1 + r

2
, (9)

in one-dimensional line elements,

χ1 = −r + s

2
, χ2 = r + 1

2
, χ3 = s + 1

2
, (10)
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in isosceles right triangle elements where r = (r , s)T , and the bi-linear rectangle shape
functions,

χ1 = (r − 1)(s − 1)

4
, χ2 = (r + 1)(1 − s)

4
,

χ3 = (r + 1)(s + 1)

4
, χ4 = (1 − r)(s + 1)

4
,

(11)

in square elements.
Therefore, the stochastic Galerkin conservation laws in the reference space read

∂ v̂
δ

∂t
= −∇r · f̂

δ
, (12)

where v̂
δ denotes the matrix of all the gPC coefficients in the reference space, and f̂

δ
are the

numerical fluxes, which we will derive in the following.

3.2 Discontinuous Flux

In the flux reconstruction method, the solution is approximated by piecewise polynomials
in physical space. For brevity, we consider a one-dimensional geometry first to illustrate the
solution algorithm. Defining the Lagrange polynomials based on Np solution points,

� j =
Np∏

k=1,k �= j

(
r − rk
r j − rk

)
, (13)

the conservative variables in the element Ωi can be represented as,

v̂
δ
(t, r) =

Np∑

j=1

v̂
δ
(t, r j )� j (r). (14)

The fluxes at these solution points can then be determined and transformed via

f̂
δD

(t, r) = f̂
(
v̂ (t,Θ i (r))

)

Ji
, (15)

where f̂ is the flux function related to the specific governing equations, and Ji = (xi+1/2 −
xi−1/2)/2 is the Jacobian of coordinate transformation. Therefore, the flux polynomials can
be constructed as,

f̂
δD

(t, r) =
Np∑

j=1

f̂
δD

(t, r j )� j (r), (16)

where f̂
δD

(t, r j ) denotes the evaluated flux calculated by Eq. (15) at solution point r j and
time t . The notation δD implies that such a flux is basically discontinuous since it is derived
directly from piecewise discontinuous solutions v̂

δ .
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3.3 Interactive Flux

It is noticeable that the discontinuous flux polynomials in Eq. (15) are of the same degree of
freedom Np − 1 as numerical solutions. A direct application of the derivatives of Eq. (15)
directly to solve Eq. (12) results in erroneous results since such a treatment does not take the
information from adjacent cells into consideration and can by no means deal with boundary
conditions. A key ingredient of the flux reconstruction method is to introduce a correction
term of degree Np to the transformed discontinuous fluxes, i.e.,

f̂
δ = f̂

δD + f̂
δC

. (17)

The total fluxes are expected to equal the correct interactive fluxes at cell boundaries, and to
preserve similar in-cell profiles of discontinuous fluxes. A feasible approach, as proposed in
[28], is to introduce two symmetric auxiliary functions {hL , hR}, which satisfy the following
restrictions,

hL(r) = hR(−r),

hL(−1) = 1, hR(−1) = 0,

hL(1) = 0, hR(1) = 1.

(18)

The corresponding corrective flux can then be reconstructed as

f̂
δC = ( f̂

δ I
L − f̂

δD
L )hL + ( f̂

δ I
R − f̂

δD
R )hR . (19)

Here { f̂ δD
L , f̂

δD
R } are the reconstructed discontinuous fluxes from the Lagrange interpolation

at the left and right boundary of the element, and { f̂ δ I
L , f̂

δ I
R } are the interactive fluxes at the

boundaries. Such fluxes can be obtained by nonlinear flux solvers, e.g. the Lax-Friedrichs
and Roe’s method [52]. Note that by choosing specific correction functions {hL , hR}, the flux
reconstruction method can recover different numerical schemes [57]. For example, recovery
of the nodal discontinuous Galerkin scheme requires the use of Radau polynomials defined
as

hL = (−1)k

2
(Lk − Lk+1), hR = 1

2
(Lk + Lk+1), (20)

where Lk is the Legendre polynomial of degree k. If the correction functions are defined as

hL = (−1)k

2

[
Lk −

(
kLk−1 + (k + 1)Lk+1

2k + 1

)]
,

hR = 1

2

[
Lk +

(
kLk−1 + (k + 1)Lk+1

2k + 1

)]
,

(21)

then the spectral difference scheme can be recovered. A detailed derivation of the equivalence
can be found in [28]. Note that changing the correction function can have a noticeable effect
on the numerical property of the flux reconstruction method. The criteria for choosing the
correction function and building the scheme from it are the stability and accuracy based
on approximation theory and Fourier analysis. However, such options can still be varied as
different schemes are able to meet the stability and accuracy requirements. Although there
has been some work comparing the numerical schemes recovered from the FR method [69],
it is very difficult to derive an optimal scheme since such a scheme is likely to be problem
dependent. In this paper, we mainly focus on the Radau polynomials defined to recover the
nodal DG scheme with random inputs.
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3.4 Total Flux

Given the total flux f̂
δ
, its derivatives can be expressed as

∂ f̂
δ

∂r
= ∂ f̂

δD

∂r
+ ∂ f̂

δC

∂r
. (22)

It can be evaluated by calculating the divergences of the Lagrange polynomials and the
corrective functions at each solution point r j , i.e.,

∂ f̂
δ

∂r
(r j ) =

Np∑

k=1

f̂
δD
k

d�k
dr

(
r j

) +
(
f̂

δ I
L − f̂

δD
L

) dhL
dr

(
r j

) +
(
f̂

δ I
R − f̂

δD
R

) dhR

dr

(
r j

)
.

(23)

Till now, we have completed the construction of the right-hand side of the governing
equations. Appropriate numerical integrators can be chosen to compute the time-marching
solutions.

3.5 Multi-dimensional Extension

The above flux reconstruction procedures can be extended to multi-dimensional cases. Inside
the element Ω i , we approximate the solutions as,

v̂
δ
(t, r) =

Np∑

j=1

v̂
δ
j (t)� j (r), (24)

where � j (r) denotes the the multi-dimensional Lagrange polynomials, and Np is the number
of solution points. If tensorized elements are considered, the above expansion can be simpli-
fied as the product of one-dimensional Lagrange polynomials. For example, in a quadrilateral
element, the solution expansion takes the form,

v̂
δ
(t, r , s) =

√
Np∑

j=1

√
Np∑

k=1

v̂
δ
j,k(t)� j (r)�k(s), (25)

where r = (r , s). The Lagrange polynomials in a generic element can be evaluated by the
nodal-modal transformation with the help of the Vandermonde matrix [25]. Therefore, the
right-hand side of the governing equation in the flux reconstruction formulation becomes

∂ v̂
δ

∂t
(r j ) = − ∇r · F̂δ

(r j )

=
Np∑

k=1

F̂
δD
k · ∇r�k

(
r j

) +
N f∑

f =1

N f p∑

k=1

[(
F̂

I
f ,k − F̂

δD
f ,k

)
· nδ

f ,k

]
∇r · h f ,k(r j ).

(26)

where N f is the number of faces and N f p is the number of flux points at each face. The

flux tensor takes F̂
δ = ( f̂

δ
, ĝδ

) in the two-dimensional case and F̂
δ = ( f̂

δ
, ĝδ

, ĥ
δ
) in

the three-dimensional case. The unit normal vector n̂ f ,k points outwards of the element.
The corrective function h f ,k at k-th flux point of f -th face is a vector, which satisfies the
following constraints,
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h f ,k
(
r j,l

) · nδ
j,l =

{
1, if f = j and k = l,
0, if f �= j or k �= l.

(27)

In this paper, since our focus is on the combination of the flux reconstruction and stochastic
Galerkinmethods,we consider a classical setting thatmakes use of themaximal order polyno-
mial basis. Note that the use of the Euclidean order basis may help reduce the computational
cost of the flux reconstruction method in two- and three-dimensional cases [25].

4 Discontinuity Capturing Strategy

In this section, we present the detailed strategy for capturing discontinuous solutions robustly
and maintaining the realizability of the solution. A series of filters that can be applied in the
multi-dimensional physical-random space is introduced to reduce the Gibbs phenomenon.
A detector of discontinuity is employed to adapt numerical dissipation based on local flow
conditions and maintain the optimal accuracy. Besides, a positivity-preserving limiter is built
to enforce the realizability of physical solutions.

For convenience of the illustration, we introduce the following transformation between
nodal and modal representations of solutions. Inside any element Ω i , the solutions can be
expressed as,

uδ
i � uN

i =
Np∑

j=1

Nc∑

k=0

ûδ
i, j,k� jΦk

= ũN
i =

Np−1∑

j=0

Nc∑

k=0

ũδ
i, j,kΨ jΦk .

(28)

The first line in Eq. (28) approximates the gPC coefficients of the stochastic solutions by
constructing Lagrange polynomials from collocation points in physical space, which we call
the nodal representation. The second line adopts a spectral representation with the help of
orthogonal polynomials in physical space, which we refer as the modal representation. Here
Ψ j and Φk denote the orthogonal polynomials in reference physical and random space, with
degrees Np−1 and Nc, respectively. The nodal andmodal representations of gPC coefficients
are related by the Vandermonde matrix,

V v̂δ
i = ṽδ

i , (29)

where v̂δ
i = {ûδ

i, j,k, 1 ≤ | j | ≤ Np, |k| ≤ Nc} and ṽδ
i = {ũδ

i, j,k, | j | ≤ Np − 1, |k| ≤ Nc}
denote the matrices of gPC coefficients in uN

i and uN
i respectively, and the entries of the

Vandermonde matrix write,

V jk = Ψk(r j ). (30)

4.1 Filter

4.1.1 Exponential Filter

The idea of filtering is to dampen the coefficients in the polynomial expansions. Such damping
effect is expected to vanish as the expansion term approaches infinity in the sense of consis-
tency. The exponential filter is arguably the most widely used filter for spectral methods [25,
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26]. It was recently used to reduce oscillations and increase convergence speed in kinetic
equations [16, 20] as well as uncertainty quantification [2, 36]. Given a one-dimensional
modal solution ũN , the exponential filtering takes the form

u∗ = F(ũN ) =
N∑

k=0

λk ũδ
kΦk, (31)

where u∗ is the post-filter solution. The filter strength λ is defined as,

λk

(
η = k

N

)
=

{
1, 0 ≤ η < η∗ = N∗

N ,

exp
(−αΔt ((η − η∗) / (1 − η∗))s

)
, η∗ ≤ η ≤ 1.

(32)

Here, N∗ ≥ 0 represents a cutoff below which the modes are left untouched, e.g., N∗ = 2
3N

as recommended by [26]. The exponent s is an integer to be determined in specific examples,
with s = 36 in [26, 31]. The filter parameter α ≥ 0 is chosen as α = 36 in [26] to ensure that
the last mode is fully damped up tomachine precision. The choice of α largely depends on the
application and several ways to choose appropriate filter parameters are discussed in detail
in [20]. We refer to Appendix A for more details and a parameter study of the filter as used
in this work. The necessary parameter choices are an apparent drawback of the exponential
filter but also allow for some flexibility in applications.

The filter operator F can be written as,

F(ũN ) = λ ◦ ũN , (33)

where λ = [λ0, λ1, · · · , λN ]T .
The above filter can be extended to multi-variate modal solutions in Eq. (28), i.e.,

u∗ = F(uN ) =
Np−1∑

j=0

Nc∑

k=0

λ j,k ũδ
j,kΨ jΦk,

λ j,k

(
η1 = j

Np
, η2 = k

Nc + 1

)

=

⎧
⎪⎨

⎪⎩

1, 0 ≤ η < η∗,{1,2},
2∏

i=1

exp
(−αΔt

((
ηi − η∗,i

)
/
(
1 − η∗,i

))s)
, else,

(34)

where η∗,1 = N∗
Np

and η∗,2 = N∗
Nc+1 . Note that also the filter parameter and exponent can be

made dependent on the dimension. The filter operator can be abbreviated again as,

F = Λ◦, (35)

where the λ j,k are the entries of the matrix Λ. It is noticeable that the filter operator can act
on the nodal solution directly in practice, where the equivalent filter operator becomes,

F∗ = VΛ ◦ V−1, (36)

where V is the Vandermonde matrix defined in Eq. (30).

4.1.2 L2 Filter

As the spectral solution is dedicated to approximating the exact solution uδ , we can define
the discrepancy between the approximation and the exact solutions based on the norms of
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the solution matrix. For example, the cost function of the L2 norm can be written as,

C(uN ) := 1

V

∫

Ω

∫

Υ

∥∥∥uδ − ũN
∥∥∥
2

L2
�(r)�(z)drdz, (37)

where V is the volume of the phase space and � denotes the probability density in the spatial
and random domains.

The L2 filter based on splines [7] regularizes the above error to mitigate oscillations. A
penalty term can be introduced into Eq. (37),

Cα(uN ) := 1

V

∫

Ω

∫

Υ

∥∥∥∥∥∥
uδ −

Np−1∑

j=0

Nc∑

k=0

ũδ
j,kΨ jΦk

∥∥∥∥∥∥

2

L2

�(r)�(z)drdz

+
∫

Ω

∫

Υ

∥∥∥∥∥∥
α1L1

Np−1∑

j=0

Nc∑

k=0

ũδ
j,kΨ jΦk

+ α2L2

Np−1∑

j=0

Nc∑

k=0

ũδ
j,kΨ jΦk

∥∥∥∥∥∥

2

L2

�(r)�(z)drdz,

(38)

where the operator L is used to punish the possible oscillations and α1,2 ∈ R+ are the filter
parameters. A common choice of the penalty operator is

Li u( y) = ∂yi
(
(1 − y2i )∂yi u( y)

)
, (39)

where y = (y1, · · · , yM ) is an arbitrary vector-valued input. Note that the Legendre poly-
nomials are eigenfunctions of this operator. Differentiating Eq. (38) with respect to the L2

norm yields the optimal coefficients,

u∗ =
Np−1∑

j=0

Nc∑

k=0

ũ∗
j,kΨ jΦk, ũ∗

j,k = ũδ
j,k

1 + α1 j2( j + 1)2 + α2k2(k + 1)2
, (40)

where û∗
j,k denotes the coefficients after filtering. As can be seen, the filter leaves the zeroth-

order coefficients untouched and thus preserve the conservation of the expected value.
The filter parameters {α1, α2} have yet to be determined. If we specify the damping ratio

of the last expansion term, the filter parameter can be obtained via,

α1 = 1

ε1N 2
p(Np − 1)2

, α2 = 1

ε2N 2
c (Nc + 1)2

, (41)

where ε1 and ε2 denote the relative magnitudes of coefficients in the last expansion term
with respect to spatial and random space. Usually {ε1, ε2} take higher values than for the
exponential filter, where the last expansion term is dampened towards zero. Furthermore,
note that if Np and Nc tend to infinity, the above choice of the filter parameter ensures
convergence, as the filtering effect vanishes in the limit.

4.1.3 Lasso Filter

The cost function of the approximation solution can be defined on other norms, e.g., the L1

norm. In [35], the filtering idea is combined with Lasso regression, and we can propose the
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following cost function in multi-dimensional space,

Cα(u∗) := 1

V

∫

Ω

∫

Υ

∥∥uδ − u∗∥∥2
L2 �(r)�(z)drdz

+ 1

V

∫

Ω

∫

Υ

Np−1∑

j=1

Nc∑

k=1

(
α1

∥∥∥L1ũ∗
j,kΨ j,k

∥∥∥
L1

+α2

∥∥∥L2ũ∗
j,kΨ j,k

∥∥∥
L1

)
�(r)�(z)drdz,

(42)

where the penalty term is based on the L1 norm and acts on the expansion term individually.
Conveniently, the above optimization problem has an analytic solution, therefore reducing

computational costs significantly. The result follows from a straightforward extension of [35,
Theorem 1]:

Theorem 1 The minimizer of Eq. (42) takes the form

ũ∗
j,k = ReLU

(
1 − α1 j( j + 1)‖Ψ jΦk‖L1

|ũδ
j,k |

− α2k(k + 1)‖Ψ jΦk‖L1

|ũδ
j,k |

)
ũδ
j,k, (43)

where ReLU is the rectified linear unit function and ‖ ·‖L1 denotes the L1 norm. The absolute
value in the denominator is applied element-wise to the vector ũδ

j,k .

Proof For ease of presentation, we assume the solution to be scalar. The extension to the
system case is trivial and can be found in [35, Theorem 1]. Let us denote potential minimizers
by α ∈ R

(Np−1)×Nc . To minimize the cost functional (42), we need to determine the gradient.
Since the cost function is not smooth, Lasso regression relies on the subdifferential [51]
instead of the gradient. The subdifferential with respect to the expansion coefficient αi,� is
denoted by ∂i,�Cα(v). When vi,� = 0, we have

∂i,�Cα(v) = {
ci,�(v, γ ) : γ ∈ [−1, 1]} (44)

where with �̃(r , z) := �(r)�(z) and uδ
i� := ∫

uδψiφ��̃ drdz we have

ci,�(v, γ ) :=
∫ ⎛

⎝
∑

j,k

v jkψ jφk − uδ

⎞

⎠ ψiφ��̃ drdz

+ γ

∫ ∑

j,k

(∣∣α1L1v jkψ jφk
∣∣ + ∣∣α2L2v jkψ jφk

∣∣) �̃ drdz

=vi� − uδ
i� + γ

∫
(|α1i(i + 1)ψiφ�| + |α2�(� + 1)ψiφ�|) �̃ drdz.

(45)

To have optimality, we need 0 ∈ ∂i,�Cα(v), i.e., if

uδ
i� ∈ [− (α1i(i + 1) + α2�(� + 1)) ‖ψiφ�‖L1 , (α1i(i + 1) + α2�(� + 1)) ‖ψiφ�‖L1

]
,

(46)

we must set vi,� to zero. If uδ
i� does not fulfill Eq. (46), we know that vi,� �= 0 and the cost

function is differentiable. Then, the gradient can be computed and the optimality condition
is simply given by

∂i,�Cα(v) = vi� − uδ
i� + sign(vi,�) (α1i(i + 1) + α2�(� + 1)) ‖ψiφ�‖L1

!= 0.

Hence, if (46) does not hold, we have
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vi� = uδ
i� − sign(vi,�) (α1i(i + 1) + α2�(� + 1)) ‖ψiφ�‖L1 .

Following the proof of [35, Theorem 1], this can be written down compactly as Eq. (43). ��
The Lasso filter yields an automated and adaptive strategy to pick an adequate filter

parameter. Following [35], we wish to choose the filter parameter, such that no information
is lost through the imposed polynomial truncation. A likely scenario which achieves this goal
is when the filter sets the highest expansion coefficients to zero. To ensure that the filtered
coefficients ũ∗

Np−1,0 and ũ
∗
0,Nc

are zero, this leads to,

α1 =
‖ũδ

Np−1,0‖L1

Np(Np − 1)‖ΨNp−1Φ0‖L1
,

α2 = ‖ũδ
0,Nc

‖L1

Nc(Nc + 1)‖Ψ0ΦNc‖L1
.

(47)

4.2 Discontinuity Detector

The filter functions are used globally each step or every few steps during the simulation.
This may lead to a loss of accuracy in smooth regions, where the solution structure has been
well captured by the polynomial expansions. A better strategy would be that appropriate
numerical dissipation is injected only when it is needed. This requires a proper detection
of discontinuous solutions. Here we follow the sensor for discontinuities proposed in [42]
for the discontinuous Galerkin methods. The sensor has been used in [47] for the filtered
stochastic-Galerkin method.

Let us consider the modal solution in the element Ω i ,

uN =
Np−1∑

j=0

Nc∑

k=0

ũδ
j,kΨ jΦk, (48)

where Np is the number of solution points, and Nc is the degree of polynomial chaos in the
random space. In the smooth region, the coefficients ũδ

j,k are expected to decrease quickly
with increasing polynomial order. Therefore, a slope indicator can be defined as

Se = 〈uN − uN−1,uN − uN−1〉
〈uN ,uN 〉 , (49)

where uN−1 denotes a truncated expansion of the same solution at order N −1. The indicator
Se can be a non-negative number for scalar transport equations, or a vector for a system of
equations. We extract the first state of Se and define it as Se. A discontinuity detector can be
formulated as,

θ =

⎧
⎪⎨

⎪⎩

1, se < s0 − κ,
1
2

(
1 − sin π(se−s0)

2κ

)
, s0 − κ ≤ se ≤ s0 + κ,

0, se > s0 + κ.

θ < 0.99 −→ discontinuity,

(50)

where se = log10(Se). The parameter s0 is chosen to be inversely proportional to the polyno-
mial degree, and κ needs to be sufficiently large to obtain a sharp and non-oscillating solution
profile.
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4.3 Positivity Preserving Limiter

The use of filters suffices to mitigate the Gibbs phenomenon and thus stabilizes the numerical
computation. However, it does not necessarily preserve the realizability of physical solutions,
e.g., the non-negative density and temperature in the Euler equations. A feasible strategy is
to apply filters either with sufficiently strong filter parameter [2] or successively [63], but
the excess introduction of artificial dissipation may cause a severe loss of accuracy or even
destroy the physical structure. In this paper, we adopt a slope limiter in conjunction with
the filter to preserve the positivity of realizable solutions. The idea of limiting the solution
slopes comes naturally from the development of high-order methods, e.g., the discontinuous
Galerkin method [5] and the flux reconstruction method [56]. We extend the limiter proposed
in [56] to multi-dimensional spatial-random space. A similar strategy has been applied in
[18], which extends the limiter in random space [48] under the DG framework.

For clarity, we take the Euler equations as an example. In the solution algorithm, we first
evaluate the polynomial chaos at quadrature points in the random space,

uδ
i � uN

i =
Np∑

j=1

Nc∑

k=0

ûδ
i, j,k� jΦk

= ǔN
i =

Np∑

j=1

Nc+1∑

k=1

uδ
i, j,k� j (r)�k(z),

(51)

where the fully nodal representation is denoted as ǔN
i .

For an interpolation higher than P1, the local extrema of density and pressure can emerge
at any point in the element, and thus we need to detect the minimum value among both
solution points and flux points. Note that this step can be done together with the Lagrange
interpolation for the interface flux calculation in Eq. (19). As we demand positivity of both
density and pressure, the limiter is turned on when the following condition is satisfied,

min(ρmin, pmin) < ε, (52)

where the small parameter ε for the element Ω i is defined via,

ε = min(10−8, ρ̄i , p̄i ). (53)

The mean density ρ̄i and mean pressure p̄i are calculated in each element Ω i .
The density value at the j-th solution point in the physical space and the k-th quadrature

point in the random space is then reconstructed with limited slopes as,

ρ�
i, j,k = β1

(
ρi, j,k − ρ̄i

) + ρ̄i , β1 = min

(
ρ̄i − ε

ρ̄i − ρmin
, 1

)
. (54)

In this way, the density values and slopes in the element are limited.
We then construct an intermediate state u� = (ρ�, ρv, ρE). If the positivity of pressure is

not satisfied, i.e., p� < ε, the following nonlinear equation is solved at all the solution and
flux points,

p
(
βl

(
u�
i, j,k − ui

)
+ ui

)
= ε, (55)
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where the corresponding slope restriction βl can be obtained at different locations. The final
limited solution at the j-th solution point and the k-th quadrature point is computed by

u+
i, j,k = β2

(
u�
i, j,k − ūi

)
+ ūi , β2 = min

l
(βl) . (56)

This scheme guarantees that the density and pressure stay positive at the solution and flux
points.

Let us now write down the process of the complete solution algorithm. For sake of read-
ability,we assume a forwardEuler time integration,while it is feasible to use other integrators.
Considering the solution ǔN ,n

i and its average ūni at time step tn inside the standard element
Ω i , the solution algorithm yields,

uN ,+
i = P(uN ,n

i ),

uN ,++
i = uN ,+

i − Δt∇r · fN ,+
i ,

uN ,n+1
i = F(uN ,++

i ),

(57)

Here, the limiting process including Eqs. (51), (54), (55), and (56) is denoted by P , and the
filtering step is denoted byF . Note that forΔx,Δt → 0, the solution algorithm is consistent
with the hyperbolicity-preserving SG method [48].

5 Numerical Experiments

In this section, wewill conduct numerical experiments to validate the current scheme.Dimen-
sionless variables are introduced as follows,

x̃ = x
L0

, t̃ = t

L0/V0
, ũ = u

U0
,

where L0 is the reference length, V0 is the reference speed andU0 denotes the reference con-
servative variables. For brevity, we drop the tilde notation to denote dimensionless variables
henceforth. In all cases, the Gauss-Legendre rule is used to determine the solution collocation
points in the reference space.

5.1 Advection Equation

In the first numerical experiment, we study the linear advection equation and validate the rate
of convergence of the scheme. The one-dimensional wave propagation problem with random
inputs is employed as the test case, i.e.,

∂t u + a∂xu = 0.

Two different kinds of uncertainty are considered.

5.1.1 Random Initial Condition

In this case, the initial condition is set as,

u(t = 0, x, z) = ξ(z) sin(πx),

and the exact solution of the linear advection equation is,
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u(t, x, z) = ξ sin(π(x − at)).

We consider the uniform distributed amplitudes in one- and two-dimensional random space,
i.e.,

ξ = 1 + 0.1z1,

and,

ξ = 1 + 0.1z1 + 0.2z2.

The Lagrange polynomials of degree 2 and 3 are employed in the computation. For the
one-dimensional case, the auxiliary functions for the corrective fluxes are set to the Radau
polynomials defined in Eq. (20) to recover the discontinuous Galerkin (DG) scheme, while
Eq. (21) is employed in the two-dimensional case to recover the spectral difference (SD)
scheme. The detailed computational setup is provided in Table 1. Following the criterion in
Eq. (50), the filter is automatically turned off in this case.

Tables 2 and 3 list the numerical errors of expectation values and orders of convergence
of the scheme under one-dimensional randomness. Tables 4 and 5 provide the corresponding
results under two-dimensional randomness. It is clear that the current method preserves
the desired third and fourth order of accuracy under different dimensions of uncertainty
and correction functions. Figure 1 shows the expected value and standard deviation of the
transport scalar u at t = 50 with 40 elements and 3 collocation points inside each cell under
two-dimensional randomness. As shown, the long time behavior of the stochastic advection
system is well captured.

5.1.2 Random Advection Velocity

In the second case, we test the convergence of the scheme with respect to the degree of poly-
nomial chaos Nc. An advection velocity which follows a normal distribution is considered,

a ∼ N (1, 0.05).

Table 1 Computational setup of wave propagation problem with random initial condition

t x z1 z2 Nx Points
(0, 50] [−1, 1] [−1, 1] [−1, 1] [4, 64] Legendre

Np Correction gPC Nc Nq u0
[3, 4] Radau, SD Legendre 5 100 ξ sin(πx)

a Flux Integrator Boundary CFL

1 Lax–Friedrichs RK4 Periodic 0.1

Table 2 Errors and rates of
convergence of the third-order
scheme in the wave propagation
problem of the advection
equation

Δx L1 error Order L2 error Order

0.5 5.941757E–2 1.960147E–2

0.25 6.901634E–3 3.11 1.563457E–3 3.65

0.125 8.419116E–4 3.04 1.354328E–4 3.53

0.0625 1.045722E–4 3.01 1.191615E–5 3.51

0.03125 1.304139E–5 3.00 1.050922E–6 3.50
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Table 3 Errors and rates of
convergence of the fourth-order
scheme in the wave propagation
problem of the advection
equation

Δx L1 error Order L2 error Order

0.5 7.184865E–3 1.912045E–3

0.25 4.177470E–4 4.10 8.187982E–5 4.55

0.125 2.583430E–5 4.02 3.624978E–6 4.50

0.0625 1.619619E–6 4.00 1.635994E–7 4.47

0.03125 1.015061E–7 4.00 7.516612E–9 4.44

Table 4 Errors and rates of
convergence of the third-order
scheme in the wave propagation
problem of the advection
equation

Δx L1 error Order L2 error Order

0.5 6.508603E–2 2.691813E–2

0.25 7.434318E–3 3.13 1.969617E–3 3.77

0.125 8.738582E–4 3.08 1.530354E–4 3.68

0.0625 1.073654E–4 3.02 1.222382E–5 3.65

0.03125 1.323275E–5 3.02 1.063807E–6 3.63

Table 5 Errors and rates of
convergence of the fourth-order
scheme in the wave propagation
problem of the advection
equation

Δx L1 error Order L2 error Order

0.5 7.255549E–3 2.081526E–3

0.25 4.196887E–4 4.11 8.446775E–5 4.62

0.125 2.584450E–5 4.02 3.626445E–6 4.54

0.0625 1.621954E–6 3.99 1.604634E–7 4.50

0.03125 1.014556E–7 4.00 7.091867E–9 4.50

Fig. 1 The expected value (left) and standard deviation (right) of wave propagation problem with Nx = 40 at
t = 50

The Hermite polynomial chaos is employed as the basis functions are defined on the random
space z ∈ [−∞,∞]. The detailed computational setup is provided in Table 6.

Table 7 lists the numerical errors of both expectation values and standard deviations
computed by the scheme with different gPC degree Nc. The spectral convergence of the
stochastic Galerkin method can be clearly identified. Note that due to limited space and time
resolution used in the scheme and the errors introduced by numerical quadrature in random
space, the errors here do not reduce to machine precision.
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Table 6 Computational setup of wave propagation problem with random advection velocity

t x z Nx Points Np
(0, 50] [−1, 1] (−∞, ∞) 64 Legendre 4

Correction gPC Nc Nq u0 a

Radau Hermite [1, 6] 100 sin(πx) N (1, 0.05)

Flux Integrator Boundary CFL

Lax-Friedrichs RK4 Periodic 0.1

Table 7 Errors and rates of convergence of the fourth-order scheme in the wave propagation problem of the
advection equation

Nc L1 error (mean) L2 error (mean) L1 error (std) L2 error (std)

1 6.058685E–3 3.434639E–4 7.626549E–2 4.323453E–3

2 6.053685E–5 3.431804E–6 5.284428E–3 4.019308E–4

3 7.313639E–7 4.162537E–8 1.044011E–4 6.213796E–6

4 7.293639E–7 4.134727E–8 3.470174E–6 2.649052E–7

5 7.270424E–7 4.121566E–8 2.426246E–7 1.420836E–8

6 7.270527E–7 4.121625E–8 2.316987E–7 1.297573E–8

5.2 Inviscid Burgers’ Equation

Now let us shift our attention from capturing smooth solutions to tackling the problemswhere
resolved andunresolved regions coexist.Wefirst consider the inviscidBurgers’ equation [45],

∂t u + u∂xu = 0.

Two random initial conditions are considered in one- and two-dimensional random space,
respectively, i.e.,

u(t = 0, x, z1) :=

⎧
⎪⎨

⎪⎩

uL , if x < x0 + ξ z1,

uM , if x ∈ [x0 + ξ z1, x1 + ξ z1]

uR, else,

,

uM = uL + uR − uL
x0 − x1

(x0 + ξ z1 − x) ,

and

u(t = 0, x, z1, z2) :=

⎧
⎪⎨

⎪⎩

uL , if x < x0 + ξ(z1 + z2),

uM , if x ∈ [x0 + ξ(z1 + z2), x1 + ξ(z1 + z2)] ,

uR, else,

uM = uL + uR − uL
x0 − x1

(x0 + ξ(z1 + z2) − x) .

The detailed computational setup can be found in Table 8, where 17 and 289 quadrature
points are used in one- and two-dimensional random space, respectively. The integrator
denotes the Runge-Kutta pairs of order 5(4) proposed by Tsitouras [55] and {ε1, ε2} are the
parameters used to define the filter parameters in Eq. (41). Note that the Lasso filter does not
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Table 8 Computational setup of Burgers shock problem

t x z1 z2 Nx
(0, 0.1] [0, 3] [−1, 1] [−1, 1] 100

Points Np Correction uL uR
Legendre [4, 6] Radau 11 1

x0 x1 ξ gPC Nc

0.5 1.5 0.2 Legendre 9

Nq Flux Integrator Boundary CFL

(17, 289) Lax-Friedrichs Tsitouras Dirichlet 0.1

s0 κ ε1 ε2 α s

−2 log(Np − 1) 4 0.6 0.6 36 3

Fig. 2 The expected value (left) and standard deviation (right) of fourth-order Burgers’ solutions at t = 0.1
with different filters

require these filter parameters as all parameters are chosen automatically. For the L2 filter,
a parameter study has been conducted to determine adequate values. The exponential filter
uses the values from the study in Appendix A.

Figures 2 and 3 show the profiles of expected value and standard deviation at t = 0.1 with
one-dimensional uncertainty computed by the fourth and sixth order schemes, respectively.
As time goes, the initial solution moves through the physical domain and thereby forms
an discontinuity. We compare the performance of different filters in this test case. For the
standard SGmethod, the Gibbs phenomenon results in spurious oscillations. Compared to the
expectation value, the variance is more sensitive and presents much stronger artifacts. As is
shown, all the filters help mitigate that in the upstream region. In the shock region, all filters
reduce oscillations, with the Lasso filter introducing the least numerical dissipation. The
exponential filter and the L2 filter show visibly more diffusive behavior. This introduction of
numerical dissipation inevitably reduces the peak value of the standard deviations. However,
benefiting from the discontinuity detector in Sect. 4.2, the adaptive L2 filter results in a
noticeable sharper profile while maintaining the robustness of the solution.

Figure 4 presents the results with two-dimensional uncertainty computed by the fourth
order scheme. Although the higher dimensional random space exhibits a more significant
Gibbs phenomenon, the filters effectively reduce the oscillation and stabilize the solution.
The performance and numerical dissipation of different filters show the same pattern as in
the one-dimensional case. This numerical experiment demonstrates the good performance of
the Lasso filter and the adaptive filter, and thus we continue with them from now on.
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Fig. 3 The expected value (left) and standard deviation (right) of sixth-order Burgers’ solutions at t = 0.1
with different filters

Fig. 4 The expected value (left) and standard deviation (right) of fourth-order Burgers’ solutions at t = 0.1
with different filters

5.3 Euler Equations

5.3.1 Wave Propagation

As a more advanced test case, we turn to the one-dimensional Euler equations,

∂

∂t

⎛

⎝
ρ

ρU
ρE

⎞

⎠ + ∂

∂x

⎛

⎝
ρU

ρU 2 + p
(ρE + p)U

⎞

⎠ =
⎛

⎝
0
0
0

⎞

⎠ . (58)

We first employ the propagation of a density wave as the benchmark to validate the rate of
convergence of the current scheme for the nonlinear hyperbolic conservation laws. The initial
condition with random input is set as,

ρ(t = 0, x, z) = 1 + ξ(z)

5
sin(2πx), U = 0, p = 1.

With periodic boundary conditions, the exact solution of the Euler equations is as follows,

ρ(t, x, z) = ξ(z) sin(2π(x − t)), U = 0, p = 1.

The computational setup is provided in Table 9.
The Lagrange polynomials of degree 3 are used in the simulation, which corresponds

to the fourth-order scheme. Different number of elements from Nx = 4 to 64 are used to
compute the rate of convergence. Following the criterion in Eq. (50), the filter is turned off
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Table 9 Computational setup of the wave propagation problem for the Euler equations

t x z Nx Points Np
(0, 2] [0, 1] [−1, 1] [4, 64] Legendre 4

Correction ξ gPC Nc Nq Flux

Raday U(0.9, 1.1) Legendre 9 17 HLL

Integrator Boundary CFL

Tsitouras Periodic 0.1

Table 10 Errors and
convergences in the wave
propagation problem of the Euler
equations

Δx L1 error Order L2 error Order

0.25 7.148984E–4 1.908245E–4

0.125 4.166900E–5 4.10 8.168646E–6 4.54

0.0625 2.581442E–6 4.01 3.609583E–7 4.50

0.03125 1.609450E–7 4.00 1.595023E–8 4.50

0.015625 1.005259E–8 4.00 7.048533E–10 4.50

automatically in this case. Table 10 shows the numerical errors and convergence orders. It is
clear that the current scheme achieves the design accuracy.

5.3.2 Sod Shock Tube

We then consider the Riemann problem of the Euler equations with random inputs. For the
Sod shock tube, the uncertainties are introduced by the stochastic initial conditions, i.e.,

v(t = 0, x, z) :=
⎛

⎝
ρ

U
p

⎞

⎠ =
{
vL , x < xc,

vR, x ≥ xc,
. (59)

Following [63], we consider two types of initial discontinuities:

1. Stochastic density in the left-hand side,

vL =
⎛

⎝
ξ

0
1

⎞

⎠ , vR =
⎛

⎝
0.125
0
0.1

⎞

⎠ , xc = 0.5, (60)

2. Stochastic location of the initial discontinuity,

vL =
⎛

⎝
1
0
1

⎞

⎠ , vR =
⎛

⎝
0.125
0
0.1

⎞

⎠ , xc = 0.5 + σ z. (61)

The second case Eq. (61) is more challenging since the discontinuity is introduced in both
physical and random space. As discussed in [46], a negative density or temperature induced
by the gPC expansions may even lead to the failure of the solver at the first iterative step.
The detailed computational setup can be found in Table 11.

For the first case of stochastic initial density, Eq. (60), the expected values and standard
deviations of density, velocity and temperature inside the shock tube at t = 0.15 are shown
in Fig. 5. The collocation results produced by the second-order finite volume method [61]
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Table 11 Computational setup of Sod shock tube problem

t x z Nx Points
(0, 0.15] [0, 1] [−1, 1] 100 Legendre

Np Correction ξ σ gPC

3 Radau U(0.9, 1.1) 0.05 Legendre

Nc Nq Flux Integrator Boundary

9 17 HLL Bogacki–Shampine Dirichlet

CFL Filter s0 κ ε1 ε2

0.1 (Lasso, L2) −3 log 2 4 0.6 (1, 0.6)

with 500 elements are plotted as benchmark. As can be seen, both filters robustly capture the
expected structures of the rarefaction wave, the contact discontinuity and the shock wave.
While the Lasso filter shows the least dissipative results, it exhibits some small oscillations
close to the discontinuities of the standard deviations. The adaptive L2 filter performs better
with respect to the amount of oscillations, at the expense of a slightlymore diffusive behavior.
This is in agreement with the results of the filter comparison in Sect. 5.2.

In the second case, Eq. (61), shown in Fig. 6 the standard SG scheme fails within the
beginning iterations due to the strong discontinuity in random space. The filters together with
the positivity-preserving limiter play a good role in mitigating the oscillations and enabling
the simulation. Similar as for the Burgers’ equation in Sect. 5.2 and the previous test case, the
Lasso filter presents less dissipation in the random space and thus results in sharper standard
deviation values. The slight oscillations around the shock wave can be further dampened by
the adaptive L2 filter, as shown in Fig. 6, which is in agreement with the results of the filter
comparison in Sect. 5.2.

5.3.3 Shock-Vortex Interaction

In the last case, we turn to the two-dimensional Euler equations,

∂

∂t

⎛

⎜⎜⎝

ρ

ρU
ρV
ρE

⎞

⎟⎟⎠ + ∂

∂x

⎛

⎜⎜⎝

ρU
ρU 2 + p

ρUV
(ρE + p)U

⎞

⎟⎟⎠ + ∂

∂ y

⎛

⎜⎜⎝

ρU
ρUV

ρV 2 + p
(ρE + p)V

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

0
0
0
0

⎞

⎟⎟⎠ . (62)

We consider the shock-vortex interaction problem, where longitudinal and transverse pro-
cesses coexist in the flow domain under stochastic Mach numbers. The right-propagating
shock wave is initialized by the Rankine-Hugoniot condition,

ρR = 1, ρL = (γ + 1)Ma2

(γ − 1)Ma2 + 2
ρR,

UR = 0, UL = cMa − (γ − 1)Ma2 + 2

(γ + 1)Ma2
,

VR = 0, VL = 0,

TR = 1, TL =
(
(γ − 1)Ma2 + 2

) (
2γMa2 − γ + 1

)

(γ + 1)2Ma2
TR,

(63)
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Fig. 5 The expected values (left column) and standard deviations (right column) of density, velocity and
temperature in the Sod shock tube at t = 0.15 under stochastic initial density

where c is the speed of sound, and the variables with subscript R and L denote the upstream
and downstream conditions, respectively. The specific heat ratio is denoted by γ and Ma
is the Mach number. The vortex is defined as an isentropic perturbation to the background
fluid,

(δU , δV ) = ζηeμ
(
1−η2

)
(sin θ,− cos θ),

δT = − (γ − 1)ζ 2

4μγ
e2μ

(
1−η2

)
, δS = 0,

(64)

where S = ln(p/ργ ) is the entropy. A polar coordinate (r , θ) is formulated by the center
of the vortex (xc, yc) and η = r/rc. The parameter κ defines the strength of the vortex, μ

indicates the decay rate of the vortex, and rc is the critical radius at which the vortex holds
the maximum strength. The initial flow field is therefore set as,

123



   18 Page 24 of 32 Journal of Scientific Computing            (2023) 95:18 

Fig. 6 The expected values (left column) and standard deviations (right column) of density, velocity and
temperature in the Sod shock tube at t = 0.15 under stochastic initial discontinuity location

v(t = 0, x, y, z) :=

⎛

⎜⎜⎝

ρ

U
V
p

⎞

⎟⎟⎠ =
{
vL + δv, x < xs,

vR + δv, x ≥ xs,
(65)

where xs is the location of the shock. The detailed computational setup can be found in Table
12.

Figures 7, 8 and 9 present the expected values and standard deviations of density contours
at t = 0.3, 0.5 and 0.7. As shown, the fine structures emerging from the interaction between
longitudinal and transverse fluid processes are robustly captured by the current scheme. The
roles of shock and vortex as source terms of uncertainties is clearly demonstrated. Figures 10
and 11 provide the profiles of density and temperature along the horizontal central line. The
collocation results produced by the deterministic flux reconstruction method and the second-
order finite volumemethod [61]with the same amount of elements are plotted for comparison.
Benefiting from the higher-order representation, the accuracy and fidelity of solutions are
improved compared to the collocation and the second-order finite volume results.
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Table 12 Computational setup of shock-vortex interaction problem

t x y z Nx Ny
(0, 1] [0, 2] [0, 1] [−1, 1] 100 50

Points Np Correction Ma xs xc

Legendre 3 Radau U(1.06, 1.18) 0.25 0.8

yc rc ζ μ gPC Nc

0.5 0.05 0.25 0.204 Legendre 5

Nq Flux Integrator Boundary CFL Filter

9 HLL Bogacki-Shampine Reflection 0.1 L2

s0 κ ε1 ε2

−3 log 2 4 0.6 1

Fig. 7 Expected value (left) and standard deviation (right) of density in the shock-vortex interaction problem
at t = 0.3

Fig. 8 Expected value (left) and standard deviation (right) of density in the shock-vortex interaction problem
at t = 0.5

Fig. 9 Expected value (left) and standard deviation (right) of density in the shock-vortex interaction problem
at t = 0.7

6 Conclusion

The development of higher-fidelity numerical schemes is crucial in computational fluid
dynamics. In this paper, we present the first flux reconstruction stochastic Galerkin method
for the study of uncertainty propagation. Benefiting from the uniform spectral discretiza-
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Fig. 10 Expected value (left) and standard deviation (right) of density in the shock-vortex interaction problem
at t = 1

Fig. 11 Expected value (left) and standard deviation (right) of temperature in the shock-vortex interaction
problem at t = 1

tion, an accurate approximation of solutions can be achieved, and the numerical behaviors
of the scheme in spatial and random domain are consistent. The nodal and modal representa-
tions can be transformed naturally based on orthogonal polynomials and solution collocation
points. A family of multi-dimensional filters is developed to mitigate the Gibbs phenomenon
and a positivity-preserving limiter is employed to preserve physically realizable solutions.
As a result, the current scheme is able to solve cross-scale problems, where resolved and
unresolved regions coexist in the flow domain. It provides a powerful tool for the study
of sensitivity analysis and uncertainty propagation, and the performance is demonstrated
through numerical experiments.

For future work, it is possible to apply the scheme to other complex systems, e.g.,
astrophysics [62], particle transports [66], and plasma physics [63]. An alternative to a
realizability-preserving limiter is the careful alteration of the SG system itself, such that its
hyperbolicity domain is significantly enlarged, or possibly the whole space. This approach
of deriving globally hyperbolic models has been successfully applied for kinetic equations
and free-surface flows, see [6, 21, 31, 32]. A similar approach might be used in SG models
to avoid using bound-preserving limiters in future work.
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A Appendix Parameter Choice for Exponential Filter

While the Lasso filter does not require numerical parameter choices, the exponential fil-
ter from Sect. 4.1.1 uses several parameters which need to be determined in applications
Table (13).

Different strategies exist in the literature. In [26] the filter parameter is chosen as α = 36,
together with the filter exponent s = 36 to ensure that the last mode is damped to zero up to
machine precision. However, the effect on the solution behavior is not clarified. In [31] the
parameter choice was motivated with a number of heuristics. Firstly, the effect of the filter
on the oscillation of the solution was investigated. Not surprisingly, it was found that larger
parameters α smooth the solution and eventually recover positivity of the filtered distribution
function. Secondly, a linear stability analysis of the model linearised around its equilibrium
state revealed the damping factors for each mode. It was shown that the choice α = 36 leads
to small damping (i.e., less added diffusion) of the solution, while completely damping out
the fastest mode. Lastly, the filter was tested with different parameters for the full model
and the value α = 36 indeed performed best with respect to the solution quality. While the
best choice might depend on the size of the model, the choice of α = 36 was robust in the
test cases computed in [31] and this value was therefore used for all further tests computed
therein.

In the context of the SG models here, a similar parameter study can be performed to
determine a suitable value for the filter parameter. Figure 12 shows the expectation and
standard deviation for a simple Burger’s equation test case and different filter parameters α.
We choose a constant s = 3 as the filter exponent s is only modifying the shape of the filter
strength in a mild way. Furthermore, we also choose N∗ = 0 fixed as no additional variables
need to remain unchanged.

The results in Fig. 12 clearly visualize that a small value of the filter parameter α, e.g., α =
1, is not sufficient to damp the oscillations of both the expected values as well as the standard
deviation. Similarly, a very large value of the filter parameter, e.g., α = 60, 100, also leads
to oscillations. In between, there is a range of parameters, for which the oscillations become
negligible. This includes the value α = 36, which was frequently used in the literature. This
indicates that the choice of α = 36 also seems to perform well in the settings of this paper
and we therefore use it in all test cases including the exponential filter.
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Table 13 Nomenclature

t, x, z time, space and random variables

u conservative variable

f flux function

Nc degree of polynomial chaos

uNc spectral approximation of u, i.e.,
∑Nc|k|=0 ûkΦk

v̂ matrix form of gPC coefficients of conservative variables,

i.e., {ûk , |k| ≤ Nc}
Φ orthogonal polynomial basis in random space

� probability density function

Nq number of quadrature points in random space

Ω physical space

r coordinates in the reference space of standard element

Θ transformation function of coordinates, i.e., x = Θ(r)

v̂δ matrix form of gPC coefficients of conservative variables

in the reference space

� Lagrange polynomials

Np number of solution points

J Jacobian of coordinate transformation

f̂
δ

matrix form of gPC coefficients of fluxes in the reference space

f̂
δD

discontinuous fluxes in the reference space

f̂
δC

corrective fluxes in the reference space

f̂
δ I

interactive fluxes in the reference space

hL , hR auxiliary functions for corrective fluxes

Lk Legendre polynomial of degree k

H Heaviside step function

F̂
δ

two-dimensional fluxes for gPC coefficients in the reference space

h auxiliary function for two-dimensional corrective fluxes

Ψ orthogonal polynomial basis in physical space

uN nodal representation of the solution

ũN modal representation of the solution

V Vandermonde matrix

F filter function

u∗ post-filter solution

N∗ cut-off order of exponential filter

λ filter strength

Λ matrix of filter strength whose entries are λ

◦ abbreviation of filter operator

L penalty operator of solution oscillation

α1, α2 filter-specific parameters
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Table 13 continued

Se slope indicator in which the first state is denoted as Se
s0, se parameters in the discontinuity detector

θ discontinuity detector

β1, β2, βl parameters in the positivity-preserving limiter

(a) Expectation (b) Standard deviation

Fig. 12 Expected value and standard deviation for Burger’s equation and varying filter parameters α of the
exponential filter. The filter exponent is kept fixed at s = 3 and we choose N∗ = 0
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