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 a b s t r a c t

Accurate and efficient prediction of multi-scale flows remains a formidable challenge. Construct-
ing theoretical models and numerical methods often involves the design and optimization of 
parameters. While gradient descent methods have been mainly manifested to shine in the wave 
of deep learning, composable automatic differentiation can advance scientific computing where 
the application of classical adjoint methods alone is infeasible or cumbersome. Differentiable pro-
gramming provides a novel paradigm that unifies data structures and control flows and facilitates 
gradient-based optimization of parameters in a computer program. This paper addresses the no-
tion and implementation of the first solution algorithm for multi-scale flow physics across contin-
uum and rarefied regimes based on differentiable programming. The fully differentiable simulator 
provides a unified framework for the convergence of computational fluid dynamics and machine 
learning, i.e., scientific machine learning. Specifically, parameterized flow models and numerical 
methods can be constructed for forward physical processes, while the parameters can be trained 
on the fly with the help of the gradients that are taken through the backward passes of the whole 
simulation program, a.k.a., end-to-end optimization. As a result, versatile data-augmented mod-
eling and simulation can be achieved for physics discovery, surrogate modeling, and simulation 
acceleration. The fundamentals and implementation of the solution algorithm are demonstrated 
in detail. Numerical experiments, including forward and inverse problems for hydrodynamic and 
kinetic equations, are presented to demonstrate the performance of the numerical method. The 
open-source codes to reproduce the numerical results are available under the MIT license.

1.  Introduction

Gaseous flows are endowed with a multi-scale structure. Sufficient separation of scales facilitates the development of theories of 
fluid dynamics at different scales. At the molecular mean free path, the Boltzmann equation can be employed to describe the flight and 
collision effects of individual particles. The Navier-Stokes equations depict the collective behavior of the many-particle system upon 
the fluid element models [1]. Intrigued by the well-known Hilbert’s 6th problem [2], continuous efforts have been made to bridge 
the gaps between models from different scales, e.g., the Hilbert expansions from a theoretical point of view [3] and asymptotic-
preserving numerical methods [4]. These approaches build a cross-scale path to represent the upscaling effects with reasonable 
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$f(t,\mathbf x,\mathbf v)$


\begin {equation}\frac {\partial f}{\partial t} + \mathbf v \cdot \nabla _\mathbf x f = \mathcal Q(f,f) = \int _{\mathbb {R}^{3}} \int _{\mathbb S^{2}}\left [f\left (\mathbf {v}^{\prime }\right ) f\left (\mathbf {v}_{*}^{\prime }\right )-f(\mathbf {v}) f\left (\mathbf {v}_{*}\right )\right ] \mathcal {K}(\cos \theta , g) d \boldsymbol \beta d \mathbf {v}_{*}, \label {eq:boltz}\end {equation}


$\{\mathbf v, \mathbf v_*\}$


$\{\mathbf v', \mathbf v_*'\}$


$\mathcal {K}(\cos \theta , g)$


$\theta $


$g = |\mathbf g| = |\mathbf v - \mathbf v_*|$


$\theta =\boldsymbol \beta \cdot \mathbf g / g$


$\boldsymbol \beta $


$\mathbf v' - \mathbf v_*'$


\begin {equation}\frac {\partial f}{\partial t} + \mathbf v \cdot \nabla _\mathbf x f = \mathcal R(f) = \nu (\mathcal E - f), \label {eq:bgk}\end {equation}


$\mathcal E$


$\nu $


$\mathcal E$


\begin {equation}\mathcal E = \mathcal M := \rho \left (\frac {m}{2\pi k T}\right )^{3/2} \exp (-\frac {m}{2kT} \left (\mathbf v - \mathbf V)^2 \right ), \label {Xeqn3-3}\end {equation}


$\{\rho ,\mathbf V,T\}$


$m$


$k$


$\mathcal Q(f,f)$


$\mathcal R(f)$


$\mathcal Q(f)$


\begin {equation}\mathbf {W}(t, \mathbf {x})=\left (\begin {array}{c} \rho \\ \rho \mathbf {V} \\ \rho E \end {array}\right ) := \int _{\mathbb R^3} f \psi d \mathbf {v}, \label {Xeqn4-4}\end {equation}


$\psi =(1,\mathbf v,\mathbf v^2/2)^T$


$\int _{\mathbb R^3} \mathcal Q(f) \psi d \mathbf v = 0$


\begin {equation}\frac {3}{2} kT = \frac {1}{2n} \int _{\mathbb R^3} (\mathbf v - \mathbf V)^2 f d\mathbf v, \label {Xeqn5-5}\end {equation}


$n$


\begin {equation}\partial _t \mathbf W + \int _{\mathbb R^3} \psi \mathbf v \cdot \nabla _{\mathbf x} f d\mathbf v=0, \label {Xeqn6-6}\end {equation}


\begin {equation}\begin {aligned} &\frac {\partial \rho }{\partial t} + \nabla _{\mathbf x} \cdot (\rho \mathbf V)=0, \\ &\frac {\partial \rho \mathbf V}{\partial t} + \nabla _{\mathbf x} \cdot (\rho \mathbf V \otimes \mathbf V)+\nabla _{\mathbf x} \cdot \mathbf P=0, \\ &\frac {\partial \rho E}{\partial t} + \nabla _{\mathbf x} \cdot (\rho E\mathbf V)+\nabla _{\mathbf x} \cdot (\mathbf P \cdot \mathbf V)+\nabla _{\mathbf x} \cdot \mathbf q=0, \end {aligned} \label {eq:conservation laws}\end {equation}


$\otimes $


$\mathbf P$


$\mathbf q$


\begin {equation}\mathbf P=\int _{\mathbb R^3} (\mathbf v-\mathbf V)\otimes (\mathbf v-\mathbf V)fd\mathbf v, \quad \mathbf q=\int _{\mathbb R^3} \frac {1}{2}(\mathbf v-\mathbf V)(\mathbf v-\mathbf V)^2fd\mathbf v. \label {Xeqn8-8}\end {equation}


$\mathbf P$


$\mathbf q$


$\mathbf \Omega =\mathbf \Omega _{\mathbf x} \times \mathbf \Omega _{\mathbf v}$


$N_{x}\times N_{v}$


\begin {equation}\begin {aligned} &\mathbf {\Omega }_{\mathbf x} = \bigcup _{i=1}^{N_{x}} \mathbf \Omega _{i}, \quad \bigcap _{i=1}^{N_{x}} \mathbf \Omega _{i} = \emptyset , \\ &\mathbf {\Omega }_{\mathbf v} = \bigcup _{j=1}^{N_{v}} \mathbf \Omega _{j}, \quad \bigcap _{j=1}^{N_{v}} \mathbf \Omega _{j} = \emptyset , \end {aligned} \label {Xeqn9-9}\end {equation}


\begin {equation}f \simeq \bigoplus _{i=1,j=1}^{N_{x},N_{v}} f_{i,j}, \label {Xeqn10-10}\end {equation}


$f_{i,j}$


$f_{i,j}$


\begin {equation}\bar f_{i,j}=\frac {1}{V_i V_j} \int _{\mathbf \Omega _{i}}\int _{\mathbf \Omega _{j}} f(t,\mathbf x,\mathbf v) d\mathbf v d\mathbf x, \label {Xeqn11-11}\end {equation}


$V_{i}$


$V_{j}$


$\mathbf \Omega _{i}$


$\mathbf \Omega _{j}$


$\mathbf x$


\begin {equation}\begin {aligned} \frac {\partial \bar f_{i,j}}{\partial t} &= -\frac {1}{V_{i}} \oint _{\partial \mathbf \Omega _i} \mathbf F^f_j(t,\mathbf x) \cdot d\mathbf S + \mathcal Q(\bar f_{i,j}) \\ &= -\frac {1}{V_{i}} \sum _{k=1}^{N_f} \mathbf F_{k,j}^f \cdot \Delta \mathbf S_k + \bar \nu _i (\bar {\mathcal E}_{i,j} - \bar f_{i,j}), \end {aligned} \label {eq:fvm micro}\end {equation}


$\mathbf F^f$


$\mathbf S=\mathbf n \Delta S$


$N_f$


$\mathbf F^f$


$k$


$i$


$i+1$


\begin {equation}\begin {aligned} &\mathbf F^f_{k,j} = \mathbf v_j f^f_{k,j}, \\ &f_{k,j}^f = \hat f_{i,j}^k H(\mathbf n \cdot \mathbf v_j) + \hat f_{i+1,j}^k (1-H(\mathbf n \cdot \mathbf v_j)), \end {aligned} \label {eq:flux}\end {equation}


$\hat f_{i,j}^k$


$H$


$\mathbf \Omega _{\mathbf v}$


\begin {equation}\begin {aligned} \frac {\partial \bar {\mathbf W}_{i}}{\partial t} &= -\frac {1}{V_{i}} \oint _{\partial \mathbf \Omega _i} \mathbf F^W \cdot d\mathbf S = -\frac {1}{V_{i}} \sum _{k=1}^{N_f} \mathbf F_{k}^W \cdot \Delta \mathbf S_k. \end {aligned} \label {eq:fvm macro}\end {equation}


$\mathbf \Omega _{i}$


\begin {equation}\bar {\mathbf W}_{i} := \int _{\mathbb R^3} f_{i} \psi d \mathbf {v} \simeq \sum _{j=1}^{N_{v}} w_j f_{i,j} \psi _j, \label {Xeqn15-15}\end {equation}


$w_j$


$N_{x}$


$N_{v}$


$\mathbf u \in \mathbb R^{N_{u}}$


\begin {equation}\begin {aligned} &\frac {\partial \mathbf u}{\partial t}=\mathcal F(t,\mathbf u,\mathbf p), \\ &\mathcal C(t,\mathbf u,\mathbf p)=0, \end {aligned} \label {eq:ode}\end {equation}


$\mathbf p\in \mathbb R^{N_{p}}$


$\mathcal F$


$\mathcal C$


$C(\mathbf u,\mathbf p)$


\begin {equation}M \mathbf u' = \mathcal G(t,\mathbf u,\mathbf p), \label {Xeqn17-17}\end {equation}


$\mathbf u'$


\begin {equation}C(\mathbf u,\mathbf p)=\int _{t_0}^{t_1} g(t,\mathbf u,\mathbf p)dt, \label {eq:continuous cost}\end {equation}


$t_0$


$t_1$


$\partial C/\partial \mathbf p$


$\lambda $


$\partial _{\mathbf u} C$


$\partial _{\mathbf p} C$


$\lambda $


\begin {equation}I(\mathbf u, \mathbf p)=C(\mathbf u, \mathbf p)-\int _{t_0}^{t_1} \lambda ^* \mathcal H(t,\mathbf u,\mathbf u',\mathbf p) d t , \label {Xeqn19-19}\end {equation}


$\lambda ^*$


$\lambda $


$\mathcal H = M \mathbf u' - \mathcal G=0$


$C$


$\mathbf p$


\begin {equation}\frac {\partial C}{\partial \mathbf p}=\frac {\partial I}{\partial \mathbf p}=\int _{t_0}^{t_1}\left (g_{\mathbf p}+g_{\mathbf u} \mathbf u_{\mathbf p}\right ) d t-\int _{t_0}^{t_1} \lambda ^*\left (\mathcal H_{\mathbf p}+\mathcal H_{\mathbf u} {\mathbf u}_{\mathbf p}+\mathcal H_{\mathbf u'} {\mathbf u}'_{\mathbf p}\right ) d t. \label {Xeqn20-20}\end {equation}


\begin {equation}\frac {\partial C}{\partial \mathbf p}=\int _{t_0}^{t_1}\left (g_{\mathbf p}-\lambda ^*\mathcal H_{\mathbf p}\right ) d t +\int _{t_0}^{t_1} (g_{\mathbf u}-\lambda ^* \mathcal H_{\mathbf u}+(\lambda ^* \mathcal H_{\mathbf u'})') \mathbf u_{\mathbf p} d t - [\lambda ^* \mathcal H_{\mathbf u'} \mathbf u_{\mathbf p}]_{t_0}^{t_1} . \label {Xeqn21-21}\end {equation}


\begin {equation}g_{\mathbf u}-\lambda ^* \mathcal H_{\mathbf u}+(\lambda ^* \mathcal H_{\mathbf u'})'=0, \label {Xeqn22-22}\end {equation}


\begin {equation}\lambda ^* \mathcal H_{\mathbf u'} \vert _{t=t_1} =0, \label {Xeqn23-23}\end {equation}


$\partial C/\partial \mathbf p$


\begin {equation}\begin {aligned} \frac {\partial C}{\partial \mathbf p}&=\int _{t_0}^{t_1} \left (g_{\mathbf p}-\lambda ^* \mathcal H_{\mathbf p}\right ) d t + (\lambda ^* \mathcal H_{\mathbf u'} \mathbf u_{\mathbf p}) \vert _{t=t_0} \\ &=\int _{t_0}^{t_1} \left (g_{\mathbf p}+\lambda ^* \mathcal G_{\mathbf p}\right ) d t + \lambda ^*(t_0) M \mathbf u_{\mathbf p}. \end {aligned} \label {eq:sensitivity}\end {equation}


$\lambda $


$C$


\begin {equation}C(\mathbf u,\mathbf p) = \int _{t_0}^{t_1} \sum ^{N_{d}}_i \|\mathbf d_i-\mathbf u(t_i,\cdot )\|^2 \delta (t_i - t) dt, \label {eq:discrete cost}\end {equation}


\begin {equation}g_{\mathbf u}(t_i)=2(\mathbf d_i-\mathbf u(t_i,\cdot )), \label {Xeqn26-26}\end {equation}


$\mathbf d_i$


$t_i$


$\partial P$


$\digamma : \mathcal S_0 \rightarrow \mathcal S_K$


\begin {equation}\digamma = \digamma _K \circ \digamma _{K-1} \circ \cdots \circ \digamma _1, \label {eq:chain}\end {equation}


$\digamma _k: \mathcal S_{k-1} \rightarrow \mathcal S_k$


$\mathbf {s}_{k-1} \in \mathcal S_{k-1}$


$\mathbf {s}_{k} \in \mathcal S_{k}$


\begin {equation}\partial \digamma (\mathbf s_0)=\partial \digamma _K(\mathbf s_{K-1}) \partial \digamma _{K-1}(\mathbf s_{K-2}) \cdots \partial \digamma _{1}(\mathbf s_{0}). \label {eq:jacobian chain}\end {equation}


$\digamma $


$C \circ \digamma $


$\partial \digamma (\mathbf s_0)$


$\mathbf w$


$\mathbf s_k$


$\partial \digamma _k$


$\digamma _k$


$\digamma _k$


$C \circ \digamma $


\begin {equation}\nabla (C \circ \digamma )(\mathbf s_0)=\partial \digamma (\mathbf s_0)^* \nabla C(\digamma (\mathbf s_0)), \label {Xeqn29-29}\end {equation}


$\partial \digamma (\mathbf s_0)^* : \mathcal S_K \rightarrow \mathcal S_0$


\begin {equation}\partial \digamma (\mathbf s_0)^*=\partial \digamma _{1}(\mathbf s_{0})^* \circ \partial \digamma _{2}(\mathbf s_{1})^* \circ \cdots \circ \partial \digamma _K(\mathbf s_{K-1})^*. \label {Xeqn30-30}\end {equation}


$\partial \digamma _k(\mathbf s_{k-1})^*$


$\mathbf s_k$


$K$


$\mathcal S_k$


$\mathcal S_k \subseteq \mathbb R^{D_k}$


$D_K\geq D_0$


$D_K<D_0$


$\mathrm {NN}_{\boldsymbol \theta }$


\begin {equation}\begin {aligned} \mathbf s_0 & :=\mathbf {u},\\ \mathbf s_1 & :=\mathcal L_1\left (\mathbf s_0, \boldsymbol {\theta }_1\right ), \\ \mathbf s_2 & :=\mathcal L_2\left (\mathbf s_1, \boldsymbol {\theta }_2\right ), \\ & \vdots \\ \mathbf {s}_K & :=\mathcal L_K\left (\mathbf {s}_{K-1}, \boldsymbol {\theta }_K\right ), \end {aligned} \label {eq:nn}\end {equation}


$\mathcal L_k$


$\boldsymbol {\theta }:=(\boldsymbol \theta _1,\dots ,\boldsymbol \theta _K)$


\begin {equation}\mathcal L_k := \phi _k (\boldsymbol \omega _k \mathbf s_{k-1} + \mathbf b_k) \label {eq:perceptron}\end {equation}


$\boldsymbol {\omega }_k$


$\mathbf b_k$


$\phi _k$


\begin {equation}\begin {aligned} &\frac {\partial \mathbf u}{\partial t}=\mathcal F(t, \mathbf u, \boldsymbol \alpha , \mathrm {NN}_{\boldsymbol \theta }(t,\mathbf u)), \\ &\mathcal C(t,\mathbf u,\boldsymbol \alpha ,\boldsymbol \theta )=0, \end {aligned} \label {eq:ude}\end {equation}


$\mathrm {NN}_{\boldsymbol \theta }$


$\mathbf p=(\boldsymbol \alpha ,\boldsymbol \theta )$


$U$


$t=0.2$


$U$
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$U$


$t=0.25$
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$t=\tau _0$
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$t=5\tau _0$
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$t=10\tau _0$
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$t=10\tau _0$
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$V$


$t=\tau _0$


$U$


$V$


$t=5\tau _0$


$U$


$V$


$t=10\tau _0$


$U$


\begin {equation}C = \sum _i^{N_c} \sum ^{N_{t}}_j \|\mathbf u_i^{\mathrm {ref}}(t_j)-\mathbf u_i(t_j)\|^2 + \epsilon \|\boldsymbol {\theta }\|^2, \label {eq:cost}\end {equation}


$N_c$


$N_t$


$N_{d}=N_c N_t$


$\mathbf u^{\mathrm {ref}}$


$L_2$


$\epsilon $


$C$


$\partial P$


$\partial P$


$\partial P$


$\partial P$


\begin {equation}\begin {aligned} &\tilde t = \frac {t}{L_0/V_0}, \ \tilde {\mathbf x} = \frac {\mathbf x}{L_0}, \ \tilde {\rho } = \frac {\rho }{\rho _0}, \ \tilde {\mathbf V} = \frac {\mathbf V}{V_0}, \ \tilde {T} = \frac {T}{T_0}, \ \tilde {E} = \frac {E}{V_0^2}, \ \\ &\tilde {\mathbf P} = \frac {\mathbf P}{\rho _0 V_0^2}, \ \tilde {\mathbf q} = \frac {\mathbf q}{\rho _0 V_0^{3}}, \ \tilde {\mu } = \frac {\mu }{\rho _0 L_0 V_0}, \tilde {\mathbf v} = \frac {\mathbf v}{V_0}, \ \tilde f = \frac {f}{\rho _0 /V_0^3}, \
\end {aligned} \label {Xeqn35-35}\end {equation}


$\mu $


$V_0=\sqrt {2kT_0/m}$


\begin {equation}\mathrm {Kn}=\frac {\ell _0}{L_0}=\frac {V_0}{L_0 \nu _0}, \label {Xeqn36-36}\end {equation}


$\ell _0=V_0/\nu _0$


$\nu _0$


$\partial P$


$k$


\begin {equation}f_k^f = \chi f_{k}^u + (1-\chi ) f_{k}^c, \label {Xeqn37-37}\end {equation}


$f_k^u$


$f_k^c$


$\chi \in [0,1]$


$i+1$


$i$


\begin {equation}\begin {aligned} &f_{k}^u = \hat f_{i}^k H(\mathbf n \cdot \mathbf v) + \hat f_{i+1}^k (1-H(\mathbf n \cdot \mathbf v)), \end {aligned} \label {eq:flux1}\end {equation}


$\{\hat f_{i}^k,\hat f_{i+1}^k\}$


$H$


\begin {equation}f_{k}^c = \mathcal M_k^c, \label {Xeqn39-39}\end {equation}


\begin {equation}\int _{\mathbb R^3} \mathcal M_{k}^c \psi d\mathbf v = \int _{\mathbf n \cdot \mathbf v \ge 0} \hat f_i^k \psi d\mathbf v+ \int _{\mathbf n \cdot \mathbf v <0} \hat f_{i+1}^k \psi d\mathbf v. \label {Xeqn40-40}\end {equation}


\begin {equation}\hat f_i^k = \hat {\mathcal M}_i^k, \quad \hat f_{i+1}^k = \hat {\mathcal M}_{i+1}^k. \label {Xeqn41-41}\end {equation}


\begin {equation}\mathbf F^W_k = \int _{\mathbb R^3} \mathbf v f_k^f\psi d\mathbf v. \label {eq:flux macro}\end {equation}


$f_k^f$


\begin {equation}\left (\begin {array}{c} \rho \\ U \\ p \\ \end {array}\right )_{{t=0,x<0.5}}=\left (\begin {array}{c} 1 \\ 0 \\ 1 \\ \end {array}\right ), \quad \left (\begin {array}{c} \rho \\ U \\ p \\ \end {array}\right )_{{t=0,x\ge 0.5}}=\left (\begin {array}{c} 0.125 \\ 0 \\ 0.1 \\ \end {array}\right ). \label {Xeqn43-43}\end {equation}


$N_p$


\begin {equation}\chi = \sigma (\mathbf p). \label {Xeqn44-44}\end {equation}


$\mathbf p$


$5.0$


\begin {equation}C = \sum _i^{N_x} \|\mathbf W_i^{\mathrm {ref}}(t=0.2)-\mathbf W_i(t=0.2)\|^2, \label {Xeqn45-45}\end {equation}


$\mathbf W^\mathrm {ref}$


$t=0.2$


$2.5\%$


\begin {equation}\mu = \mu _\mathrm {ref} \left (\frac {T}{T_\mathrm {ref}}\right )^\eta , \label {Xeqn46-46}\end {equation}


$\mu _\mathrm {ref}$


$T_\mathrm {ref}$


$\eta =0.5$


\begin {equation}\tau = \frac {1}{\nu } =\frac {\mu }{p}, \label {Xeqn47-47}\end {equation}


\begin {equation}\left (\begin {array}{c} \rho \\ U \\ p \\ \end {array}\right )_{{t=0}}=\left (\begin {array}{c} 1+0.1\sin (2\pi x) \\ 1 \\ 0.5 \\ \end {array}\right ). \label {Xeqn48-48}\end {equation}


$\mathbf p \in \mathbb R^{N_p=1}$


\begin {equation}\mu _\mathrm {ref}=| \mathbf p |. \label {Xeqn49-49}\end {equation}


$\mathbf p$


$10.0$


\begin {equation}C = \sum _i^{N_x}\sum _j^{N_v}\sum _k^{N_t} |f_{i,j}^{\mathrm {ref}}(t_k)-f_{i,j}(t_k)|^2, \label {Xeqn50-50}\end {equation}


$f^\mathrm {ref}$


$\mu _\mathrm {ref}=0.01$


$t=0.25$


$\partial P$


$10^{-5}$


$\mathbf p \sim \mathcal N(0,0.1^2)$


$\partial P$


$C=0.00001$


$\partial P$


$\partial P$


$\partial P$


\begin {equation}\begin {aligned} &\mathbf P=-p \mathbf I + \mathbf T, \\ &\mathbf T=2\mu (\nabla _{\mathbf x} \mathbf V+(\nabla _{\mathbf x} \mathbf V)^T)-\frac {2}{3}\mu (\nabla _{\mathbf x} \cdot \mathbf V) \mathbf I, \\ &\mathbf q = -\kappa \nabla _{\mathbf x} T, \end {aligned} \label {Xeqn51-51}\end {equation}


$\mathbf T$


$\mathbf I$


\begin {equation}\mathbf F^W=\mathbf F^\mathrm {NS}+\mathbf F^\mathrm {NN}, \label {Xeqn52-52}\end {equation}


$\mathbf F^\mathrm {NS}$


$\mathbf F^\mathrm {NN}$


$\mathbf F^\mathrm {NN}$


$\mathbf W$


$\nabla _{\mathbf x} \mathbf W$


$\mathrm {Kn}$


\begin {equation}\left (\begin {array}{c} \rho \\ U \\ V \\ T \\ \end {array}\right )_{{t=0,x<0}}=\left (\begin {array}{c} 1 \\ 0 \\ 1 \\ 1 \\ \end {array}\right ), \quad \left (\begin {array}{c} \rho \\ U \\ V \\ T \\ \end {array}\right )_{{t=0,x\ge 0}}=\left (\begin {array}{c} 1 \\ 0 \\ -1 \\ 0.5 \\ \end {array}\right ). \label {Xeqn53-53}\end {equation}


$\tau _0$


\begin {equation}C = \sum _i^{N_x}\sum _j^{N_t} \|\mathbf W_{i}^{\mathrm {ref}}(t_j)-\mathbf W_{i}(t_j)\|^2 + \epsilon \|\boldsymbol {\theta }\|^2, \label {Xeqn54-54}\end {equation}


$\mathbf W^\mathrm {ref}$


$t=\tau _0$


$5\tau _0$


$\tau _0$


\begin {equation}\left (\begin {array}{c} \rho \\ U \\ V \\ T \\ \end {array}\right )_{{t=0,x<0}}=\left (\begin {array}{c} 1 \\ 0 \\ 0.5 \\ 1 \\ \end {array}\right ), \quad \left (\begin {array}{c} \rho \\ U \\ V \\ T \\ \end {array}\right )_{{t=0,x\ge 0}}=\left (\begin {array}{c} 1 \\ 0 \\ -1 \\ 0.6 \\ \end {array}\right ), \label {Xeqn55-55}\end {equation}


$t=\tau _0$


$5\tau _0$


$\tau _0$


$\partial P$


$\partial P$


$\partial P$


$O(N_v^6)$


$\mathcal B$


$\mathcal T$


$\mathcal B$


$N_v$


$\{f_j\}_{j=1:N_v}$


$\mathbf v\in \mathbb R^d$


$d$


\begin {equation}\frac {\partial f}{\partial t} + \mathbf v \cdot \nabla _\mathbf x f = \frac {1}{\mathrm {Kn}} \mathrm {NN}_{\boldsymbol {\theta }}(f). \label {eq:nbe}\end {equation}


\begin {equation}f = \frac {1}{2}\left (\frac {1}{\pi }\right )^{3/2}(\exp (-(u-1)^2)+0.7\exp (-(u+1)^2))\exp (-v^2)\exp (-w^2). \label {eq:initial pdf}\end {equation}


$x$


\begin {equation}h=\int _{-\infty }^\infty \int _{-\infty }^\infty f dvdw. \label {Xeqn58-58}\end {equation}


$h$


\begin {equation}C = \sum _j^{N_v}\sum _k^{N_t} |f_{j}^{\mathrm {ref}}(t_k)-f_{j}(t_k)|^2, \label {Xeqn59-59}\end {equation}


$f^\mathrm {ref}$


$\partial P$


$\mathcal R(f)$


$\mathcal Q(f)$


$\int f \log f d\mathbf v$


\begin {equation}f = \frac {1}{2}\left (\frac {1}{\pi }\right )^{3/2}(\exp (-(u-1)^2)+\exp (-(u+1)^2))\exp (-v^2)\exp (-w^2), \label {Xeqn60-60}\end {equation}


\begin {equation}\frac {\partial f}{\partial t} + \mathbf v \cdot \nabla _\mathbf x f = \frac {1}{\mathrm {Kn}} \mathrm {NN}_{\boldsymbol {\theta }}(f)+\nu (\mathcal M-f). \label {eq:ube}\end {equation}


$\partial P$


$\partial P$


$\partial P$


\begin {equation}\left (\begin {array}{c} \rho \\ U \\ T \\ \end {array}\right )_{{t=0,x<0}}=\left (\begin {array}{c} \rho _- \\ U_- \\ T_- \\ \end {array}\right ), \quad \left (\begin {array}{c} \rho \\ U \\ T \\ \end {array}\right )_{{t=0,x\ge 0}}=\left (\begin {array}{c} \rho _+ \\ U_+ \\ T_+ \\ \end {array}\right ), \label {Xeqn62-62}\end {equation}


$-$


\begin {equation}\begin {aligned} \frac {\rho _{+}}{\rho _{-}} &=\frac {(\gamma +1) \mathrm {Ma}^{2}}{(\gamma -1) \mathrm {Ma}^{2}+2}, \\ \frac {U_{+}}{U_{-}} &=\frac {(\gamma -1) \mathrm {Ma}^{2}+2}{(\gamma +1) \mathrm {Ma}^{2}}, \\ \frac {T_{+}}{T_{-}} &=\frac {\left ((\gamma -1) \mathrm {Ma}^{2}+2\right )\left (2 \gamma \mathrm {Ma}^{2}-\gamma +1\right )}{(\gamma +1)^{2} \mathrm {Ma}^{2}}, \end {aligned} \label {Xeqn63-63}\end {equation}


$\rm Ma$


$\gamma =5/3$


\begin {equation}C = \sum _i^{N_x}\sum _j^{N_v} |f_{i,j}^{\mathrm {ref}}(t=50)-f_{i,j}(t=50)|^2, \label {Xeqn64-64}\end {equation}


$f^\mathrm {ref}$


$O(10\ell )$


$\partial P$
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Table 1 
Nomenclature.

𝜕𝑃  differentiable programming
 AD  automatic differentiation
𝑡  time variable
𝐱  space variables (𝑥, 𝑦, 𝑧)
𝐯  particle velocity variables (𝑢, 𝑣,𝑤)
𝑓  particle distribution function
,   collision and relaxation operators in the kinetic equation
  Maxwellian distribution function
𝜈, 𝜏  relaxation frequency and time (𝜏 = 1∕𝜈)
𝑚  molecular mass
𝑘  Boltzmann constant
𝜌, 𝐕, 𝑇 , 𝐸  macroscopic primitive variables
𝜓  collision invariants
𝐖  macroscopic conservative variables
𝐏, 𝐓, 𝐪  stress tensor, deviator tensor and heat flux
𝑓 , �̄�  cell-averaged distribution function and conservative variables
𝐅𝑓 , 𝐅𝑊  numerical fluxes for distribution function and conservative variables
𝐮  generic representation of flow variables
  operator of fluxes and sources in semi-discrete equations
  operator of initial and boundary conditions in semi-discrete equations
𝐩  control parameters
𝐶  cost function
𝑔  function integrated in the cost function
𝜆  adjoint variable
𝐝  data points in the training set
ϝ  generic representation of numerical operation
𝜕ϝ  Jacobian and associated VJP and JVP of ϝ
𝐬  states in a sequence of operations
𝐭, 𝐫  intermediate variables for derivation in forward- and reverse-mode ADs
NN𝜽  neural network with trainable parameters 𝜽
  function layer in a neural network
𝝎, 𝐛, 𝜙  weights, biases and activation function in a neural network
𝜶  trainable parameters in the mechanical model
𝐮ref  referenced flow solution
𝜖  regularization parameter
𝜇  dynamic viscosity coefficient
𝜒  proportion of upwind contribution to numerical fluxes
𝑓  reconstructed distribution function at cell face
𝜎  sigmoid function
ℎ  reduced distribution function

asymptotics. However, it remains a formidable challenge to recover a continuous spectrum of flow physics and, in particular, to 
provide a succinct and accurate description in the transition regime.1

Modeling and simulation of flows is a task of intertwined forward and inverse problems. Building reliable theoretical models and 
numerical methods requires a proper determination of design variables. At the molecular mean free path, i.e., the mesoscopic scale, 
phenomenological parameters in the collision kernel of the Boltzmann equation need to be routinely calibrated by experiments to 
preserve correct transport coefficients [5]. At the macroscopic level, constitutive functions are required as the closure of the Navier-
Stokes equations and extended hydrodynamic models [6]. From a numerical perspective, a numerical scheme’s success depends on 
the optimization of the parametric solution algorithm, e.g., the nonlinear weights in the reconstruction stencil, the ratio of central and 
upwind contributions in the numerical flux function, and the coefficients in the Butcher tableau of the Runge-Kutta integrator. Such 
optimization is more challenging for multi-scale flows since models and algorithms that are optimal at one scale are not necessarily 
suitable for another.

The burgeoning discipline of machine learning, particularly deep learning, has widened the possibilities for studying complex 
flows under extreme conditions that once seemed beset with difficulties. Neural networks as black-box models can be directly opti-
mized using high-fidelity data without requiring interpretable expressions, thus enabling flexible modeling and simulation of flow 
physics, including efficient solution of high-dimensional differential equations [7,8], operator learning for mappings of functions and 
distributions [9,10], and data-driven discovery of non-equilibrium physics [11,12]. The architecture of neural networks allows for 
effortless scaling of parameters to deliver sufficient approximation capability. To improve the prediction of flow physics for such 
models, a typical workflow is to construct an objective function to be optimized with respect to the trainable parameters (known as 
the loss function in deep learning), following the supervised or unsupervised learning approach. The gradient information is usually 
obtained by backpropagating the loss through a chain of matrix operations, and the optimization problem is subsequently solved 
using stochastic gradient descent and its variants incorporating momentum and adaptive learning rates [13].

1 https://github.com/vavrines/KitAD.jl
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The optimization of parametric flow models and numerical methods can be performed based on two paradigms. The first idea 
is to build prior flow datasets through high-fidelity experiments or fine-scale simulations, followed by supervised learning. This 
approach is called offline training, and it can be applied to any parametric functions and operators on discrete spatio-temporal 
sensors. However, this type of training usually has no direct perception of the time-evolving processes and spatio-temporal coupling 
embedded in the fluid dynamic equations. As a result, the training data may not be utilized efficiently, which requires greater access 
to costly, high-confidence data [14]. On the other hand, the solution process of computational fluid dynamic (CFD) systems at the 
corresponding characteristic scales can be included in the loss function, forming the PDE-constrained optimization problem [15]. 
Such a methodology, called end-to-end training, is in favor as it covers the dynamics of a continuous-time model with necessary 
prior knowledge and physical structure. Each moment of the training data and predictions can be aligned and both supervised and 
unsupervised learning can be adapted.

Due to the high computational cost of CFD solvers, gradient-based optimization is arguably a natural pair with end-to-end training. 
However, the existence of solution trajectories of governing equations has made it trickier to obtain accurate gradient information. 
As analyzed in [16], direct evaluation of gradients in initial-value problems for partial differential equations can lead to an explo-
sion of computational complexity, making it impractical to perform for a large number of flow variables or control parameters. 
The adjoint method addresses this challenge by introducing auxiliary variables and constructing the dual form of the optimization 
problem [17,18]. It is a well-suited tool for optimization and sensitivity analysis in high-dimensional space, e.g., aerodynamic shape 
design and optimization [19]. While the adjoint method encounters limitations in assimilating black-box modules, one might note 
that the counterpart of it within deep learning manifests as reverse-mode automatic differentiation (AD), commonly referred to as 
backpropagation, wherein the chain rule unfolds through a sequence of vector-Jacobian product operations from the loss function.

Differentiable programming (denoted as 𝜕𝑃 ) has become a prominent notion for conducting scientific machine learning research. 
Unlike the convention where AD is limited to accumulating the gradients of matrix operations, neural networks in 𝜕𝑃  are regarded 
as generic nonlinear functions specified through a computer program. Other differentiable physical models or agents, including 
differential equations, can be incorporated as nodes in a computation graph equivalent to a neural network. This has allowed us to 
integrate principled differentiable operations and have them act as building blocks for each other to better approximate the structure 
of the problem in the task at hand, e.g., neural ODE models [20] and parametric high-dimensional differential equations [21]. The 
differentiability of the individual nodes in the computation graph facilitates taking gradients of the computer program under the 
chain rule, which is the essential difference between 𝜕𝑃  and classical computer programming [22]. In summary, 𝜕𝑃  provides a novel 
paradigm that unifies data structures and control flows to enable end-to-end AD and gradient-based optimization in machine learning 
and scientific computing tasks.

Although AD undoubtedly revolutionizes the paradigm of computing the gradient of complicated functions, which can be extremely 
tedious (or even impossible) to implement manually, it is important to note that it is not a panacea. The practice of AD faces at least 
two challenges. First, existing AD engines often restrict types and styles of code. In the case of JAX [23], for example, all functions need 
to be mathematically valid (a.k.a. pure functions), and thus control flows must be organized through functional programming. Such 
requirements are not trivial to meet, especially when external libraries from other compilers or languages are called, or heterogeneous 
computing is used. Second, AD may generate less efficient codes. An example goes to iterative schemes, e.g., the Krylov subspace 
methods [24]. Here, the direct application of AD to the solution of a linear system leads to a high computational overhead since the 
AD engine will treat the iteration as recurrence and store all intermediate steps. A feasible workaround for the above challenges is 
to implement the gradient manually, e.g., by applying the adjoint method to the final-state solution, and to compose the self-defined 
vector-Jacobian product into the chain rule for the surrounding operations. In essence, the full potential of 𝜕𝑃  can only be realized 
through the interplay of composable AD and adjoints (designing differentiable operations and combining them with efficient adjoints). 
In this context, 𝜕𝑃  may be properly conceptualized as a generalization of adjoint methods that plays nicely with machine-learning 
components.

There is an emerging consensus in the academic community on the importance of 𝜕𝑃  in CFD practices. Among others, Belbute-
Peres et al. combined a differentiable CFD simulator and graph neural networks to accelerate the CFD prediction [25]. Zhuang et 
al. built differentiable codes to learn the optimal discretization for passive scalar advection in turbulent flows [26]. Bezgin et al. 
constructed a differentiable CFD program for multi-phase flows based on the JAX engine [27]. Fan and Wang employed 𝜕𝑃  to model 
fluid-structure interaction efficiently [28]. Ho and Farhat developed a differentiable embedded boundary method for aerodynamic 
optimization [29]. Kochkov et al. employed end-to-end differentiable learning for subgrid model discovery in turbulence [30]. Um et 
al. placed differentiable physics into the training process to reduce the error of iterative PDE solvers [31]. To the best of the author’s 
knowledge, existing 𝜕𝑃 -related work has focused on solving single governing equations, while work on the physics of multi-scale 
flows with multiple governing equations and multiple degrees of freedom is limited.

Several neural network-based methods have also been developed for numerical simulation of rarefied and non-equilibrium flows. 
Lou et al. developed a physics-informed neural network (PINN) framework for the Boltzmann-BGK equation for forward and inverse 
flow problems [32]. Florio et al. applied PINNs to the solution of Poiseuille and thermal creep flows [33,34]. Tucny et al. investigated 
the microflows in cylinder arrays using PINNs [35], and identified the viscosity function in rarefied gases [36]. Zhang et al. developed 
PINNs based on the discrete velocity method of the linearized BGK equation [37]. Note that PINNs significantly differ from 𝜕𝑃  as 
a single neural network is treated as the PDE solver, whereas 𝜕𝑃  treats an existing solver as a differentiable computation graph, 
in which neural modules are inserted. Besides, neural networks have been used to reduce the complexity of solving the Boltzmann 
and related equations. Related work has been conducted in developing surrogate models for the Boltzmann equation [38–40] and 
constructing closure models for extended hydrodynamic equations [41–44]. Most of these approaches rely on offline training with 
prior datasets without tightly integrating numerical solvers and neural networks through 𝜕𝑃 .
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This paper serves as the first comprehensive application of 𝜕𝑃  to solve continuum and rarefied flows. The unique distinction 
of this work compared to existing approaches lies in its seamless integration of automatic differentiation and adjoint sensitivity 
analysis. The parametric kinetic model and solution algorithm with differentiable operations are constructed upon the Boltzmann 
equation and its hydrodynamic asymptotics. The continuous adjoint equations are developed based on the semi-discrete governing 
equations derived from the finite volume method and then bundled into the AD engine. The design parameters in flow models 
and numerical methods, especially in neural networks, can then be end-to-end optimized on the fly with the gradients through the 
backward passes of the whole simulation program. Thus, a unified differentiable simulator is constructed that can tightly integrate the 
solution and optimization processes and is suitable for forward and inverse problems arising in rarefied and multi-scale gaseous flows. 
The program implementation is based on the Julia language, which enables language-wide AD via source-to-source transformation 
[45,46]. Numerical experiments for both continuum and rarefied flow problems will be presented to elucidate the 𝜕𝑃 -based solution 
paradigm and validate the computer program. For reproducible science, the relevant codes (augmented by Kinetic.jl, an indigenously 
developed differentiable framework designed for scientific and neural computing tasks [47]) for this paper are available under the 
MIT license.2

The rest of this paper is organized as follows. Section 2 presents a brief introduction to the kinetic theory of gases and numerical 
discretizations. Section 3 derives the adjoint equations and illustrates the joint use with AD in flow optimization problems. Section 4 
describes the complete solution and optimization algorithms. Section 5 includes numerical experiments to demonstrate the validity 
and performance of the current method. The last section is the conclusion. The nomenclature of this paper is presented in Table 1.

2.  Basic theory

The kinetic theory can inscribe the flow physics of rarefied and continuum gases. Lying at its core, the fluid is modeled as a many-
particle system and its time-space evolution is statistically tracked using the single-particle distribution function. In the absence of 
internal degrees of freedom and external force, the Boltzmann equation for the distribution function 𝑓 (𝑡, 𝐱, 𝐯) writes

𝜕𝑓
𝜕𝑡

+ 𝐯 ⋅ ∇𝐱𝑓 = (𝑓, 𝑓 ) = ∫ℝ3 ∫𝕊2
[

𝑓
(

𝐯′
)

𝑓
(

𝐯′∗
)

− 𝑓 (𝐯)𝑓
(

𝐯∗
)]

(cos 𝜃, 𝑔)𝑑𝜷𝑑𝐯∗, (1)

where {𝐯, 𝐯∗} and {𝐯′, 𝐯′∗} denote the pre- and post-collision velocities of two classes of colliding particles. The collision kernel 
(cos 𝜃, 𝑔) is a measure of the probability of collisions in different directions, where 𝜃 is the deflection angle and 𝑔 = |𝐠| = |𝐯 − 𝐯∗| is 
the magnitude of relative pre-collision velocity. The deflection angle satisfies the relation 𝜃 = 𝜷 ⋅ 𝐠∕𝑔, where the solid angle 𝜷 is the 
unit vector along the relative post-collision velocity 𝐯′ − 𝐯′∗.

The Boltzmann equation is an integro-differential equation with extremely high dimensionality and nonlinearity. To reduce the 
computational overhead of the fivefold integral, simplified relaxation models, e.g. the Bhatnagar-Gross-Krook (BGK) model, are 
commonly adopted in the simulation of complex flows. The relaxation model writes

𝜕𝑓
𝜕𝑡

+ 𝐯 ⋅ ∇𝐱𝑓 = (𝑓 ) = 𝜈( − 𝑓 ), (2)

where  is the equilibrium distribution of relaxation directions and 𝜈 denotes the relaxation frequency. In the BGK model,  takes 
the form of the Maxwellian, i.e.,

 =  ∶= 𝜌
( 𝑚
2𝜋𝑘𝑇

)3∕2
exp(− 𝑚

2𝑘𝑇
(

𝐯 − 𝐕)2
)

, (3)

where {𝜌,𝐕, 𝑇 } are the macroscopic density, velocity and temperature, 𝑚 is the molecular mass, 𝑘 is the Boltzmann constant. The 
kinetic equations provide a mesoscopic view to describe particle transports and are consistent with first physical laws, including 
boundedness, conservation, invariance, and entropy principle [48,49]. In the following, we denote the Boltzmann collision operator 
(𝑓, 𝑓 ) and relaxation term (𝑓 ) uniformly as (𝑓 ).

A particle distribution function is related to a unique macroscopic state. The conservative variables in fluid mechanics can be 
obtained by taking moments of particle distribution function over velocity space, i.e.,

𝐖(𝑡, 𝐱) =
⎛

⎜

⎜

⎝

𝜌
𝜌𝐕
𝜌𝐸

⎞

⎟

⎟

⎠

∶= ∫ℝ3
𝑓𝜓𝑑𝐯, (4)

where 𝜓 = (1, 𝐯, 𝐯2∕2)𝑇  is a vector of collision invariants satisfying ∫ℝ3 (𝑓 )𝜓𝑑𝐯 = 0, and temperature is defined as
3
2
𝑘𝑇 = 1

2𝑛 ∫ℝ3
(𝐯 − 𝐕)2𝑓𝑑𝐯, (5)

where 𝑛 is the number density of gas. Taking conservative moments of the kinetic Eqs. (1) or (2) yields the conservation laws which 
write

𝜕𝑡𝐖 + ∫ℝ3
𝜓𝐯 ⋅ ∇𝐱𝑓𝑑𝐯 = 0, (6)

2 https://github.com/vavrines/KitAD.jl
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i.e.,
𝜕𝜌
𝜕𝑡

+ ∇𝐱 ⋅ (𝜌𝐕) = 0,

𝜕𝜌𝐕
𝜕𝑡

+ ∇𝐱 ⋅ (𝜌𝐕⊗ 𝐕) + ∇𝐱 ⋅ 𝐏 = 0,

𝜕𝜌𝐸
𝜕𝑡

+ ∇𝐱 ⋅ (𝜌𝐸𝐕) + ∇𝐱 ⋅ (𝐏 ⋅ 𝐕) + ∇𝐱 ⋅ 𝐪 = 0,

(7)

where ⊗ denotes dyadic product, and the stress tensor 𝐏 and heat flux 𝐪 are defined as

𝐏 = ∫ℝ3
(𝐯 − 𝐕)⊗ (𝐯 − 𝐕)𝑓𝑑𝐯, 𝐪 = ∫ℝ3

1
2
(𝐯 − 𝐕)(𝐯 − 𝐕)2𝑓𝑑𝐯. (8)

Choosing a suitable closure strategy for 𝐏 and 𝐪 yields solvable Euler, Navier-Stokes, and extended hydrodynamic equations [50].
CFD is dedicated to approximating the solution of governing equations at a discrete level. For Eq. (2), we consider the domain 

𝛀 = 𝛀𝐱 ×𝛀𝐯 with 𝑁𝑥 ×𝑁𝑣 non-overlapping cells,

𝛀𝐱 =
𝑁𝑥
⋃

𝑖=1
𝛀𝑖,

𝑁𝑥
⋂

𝑖=1
𝛀𝑖 = ∅,

𝛀𝐯 =
𝑁𝑣
⋃

𝑗=1
𝛀𝑗 ,

𝑁𝑣
⋂

𝑗=1
𝛀𝑗 = ∅,

(9)

and the particle distribution function is approximated as

𝑓 ≃
𝑁𝑥 ,𝑁𝑣
⨁

𝑖=1,𝑗=1
𝑓𝑖,𝑗 , (10)

where 𝑓𝑖,𝑗 denotes the piecewise-defined distribution function inside each cell. Different discretization methods can be used to ap-
proximate the solution 𝑓𝑖,𝑗 . Here we take the finite volume method as an example to illustrate.

We define the cell-averaged distribution function as

𝑓𝑖,𝑗 =
1

𝑉𝑖𝑉𝑗 ∫𝛀𝑖 ∫𝛀𝑗
𝑓 (𝑡, 𝐱, 𝐯)𝑑𝐯𝑑𝐱, (11)

where 𝑉𝑖 and 𝑉𝑗 are the volumes of 𝛀𝑖 and 𝛀𝑗 , respectively. Integrating Eq. (2) with respect to 𝐱 and applying Gauss’s law yields
𝜕𝑓𝑖,𝑗
𝜕𝑡

= − 1
𝑉𝑖 ∮𝜕𝛀𝑖

𝐅𝑓𝑗 (𝑡, 𝐱) ⋅ 𝑑𝐒 +(𝑓𝑖,𝑗 )

= − 1
𝑉𝑖

𝑁𝑓
∑

𝑘=1
𝐅𝑓𝑘,𝑗 ⋅ Δ𝐒𝑘 + �̄�𝑖(̄𝑖,𝑗 − 𝑓𝑖,𝑗 ),

(12)

where 𝐅𝑓  denotes the numerical flux of distribution function, 𝐒 = 𝐧Δ𝑆 is the area vector pointing out of the cell, and 𝑁𝑓  is the 
number of faces. Different approaches can be employed to construct the numerical flux 𝐅𝑓 . Since the kinetic equation is consistent 
with particle transport processes, a neat choice is to build the numerical flux in an upwind manner. We take the 𝑘th face of cell 𝑖 as 
an example and assume that the cell index on the other side of the face is 𝑖 + 1, then the numerical flux can be constructed as

𝐅𝑓𝑘,𝑗 = 𝐯𝑗𝑓
𝑓
𝑘,𝑗 ,

𝑓𝑓𝑘,𝑗 = 𝑓𝑘𝑖,𝑗𝐻(𝐧 ⋅ 𝐯𝑗 ) + 𝑓𝑘𝑖+1,𝑗 (1 −𝐻(𝐧 ⋅ 𝐯𝑗 )),
(13)

where 𝑓𝑘𝑖,𝑗 denotes the reconstructed distribution function at the face based on in-cell slopes, and 𝐻 is the Heaviside step function.
Following the derivation of Eq. (7), taking moments of Eq. (12) over velocity space 𝛀𝐯 yileds the semi-discrete formulation of 

conservation laws, i.e.,
𝜕�̄�𝑖
𝜕𝑡

= − 1
𝑉𝑖 ∮𝜕𝛀𝑖

𝐅𝑊 ⋅ 𝑑𝐒 = − 1
𝑉𝑖

𝑁𝑓
∑

𝑘=1
𝐅𝑊𝑘 ⋅ Δ𝐒𝑘. (14)

Here, the cell-averaged conservative variables in 𝛀𝑖 can be approximated by numerical quadrature at the discrete level, i.e.,

�̄�𝑖 ∶= ∫ℝ3
𝑓𝑖𝜓𝑑𝐯 ≃

𝑁𝑣
∑

𝑗=1
𝑤𝑗𝑓𝑖,𝑗𝜓𝑗 , (15)

where 𝑤𝑗 denotes the quadrature weights.
Given the number of elements 𝑁𝑥 and 𝑁𝑣, Eqs. (12) and (14) form a system of ordinary differential equations (ODEs) or differential-

algebraic equations (DAEs), respectively. We uniformly denote the variables as 𝐮 ∈ ℝ𝑁𝑢 , and the solution system can then be written 
as

𝜕𝐮
𝜕𝑡

=  (𝑡,𝐮,𝐩),

(𝑡,𝐮,𝐩) = 0,
(16)
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where 𝐩 ∈ ℝ𝑁𝑝  is the collection of control parameters of the solution algorithm. The contributions of numerical fluxes and source 
terms are represented by the operator  , and the initial and boundary conditions are bounded by the operator .

The solution of Eq. (16) can be obtained by integrating it along the time direction. Note that the relaxation frequency in Eq. (2) is 
proportional to the gas density, and thus the choice of the integrator is related to the regime of the flow problem. In the continuum 
limit, Eq. (2) can become stiff. Therefore, an appropriate integrator is chosen in the hope that it is efficient and A- or L-stable for 
stiff and oscillatory problems. The choices available include the backward differentiation formula (BDF) [51], multi-stage implicit 
Runge–Kutta (IRK) methods [52], and implicit-explicit (IMEX) methods [53]. The performance of different integrators for solving 
kinetic equations is briefly summarized in [54].

3.  Differentiation strategy

3.1.  Adjoint system

For the differential-equation-constrained optimization problem, a cost function denoted 𝐶(𝐮,𝐩) will be computed throughout the 
solution trajectory of the governing equation. This problem can often be handled efficiently by the adjoint sensitivity method [55], 
which is well-suited for situations requiring the sensitivity analysis of a scalar (or low-dimensional) function of the solution with 
respect to a potentially large number of parameters. We follow the derivation presented in [56], but modify it to specialize on the 
adjoint system of Eq. (16). Eq. (16) is index-0 and index-1 differential-algebraic equations (DAEs) for hydrodynamic and kinetic 
equations. Since it is linear with respect to the derivative term, we introduce the linear mass matrix and reformulate it as

𝑀𝐮′ = (𝑡,𝐮,𝐩), (17)

where 𝐮′ denotes the time derivative for brevity.
For a time-varying problem, a viable cost function can be constructed as

𝐶(𝐮,𝐩) = ∫

𝑡1

𝑡0
𝑔(𝑡,𝐮,𝐩)𝑑𝑡, (18)

where 𝑡0 and 𝑡1 denote two moments in time. We expect to obtain the derivative 𝜕𝐶∕𝜕𝐩, and the problem translates into computing 
the intermediate quantity 𝜆 (called the adjoint variable) as the solution of the adjoint system. The derivatives 𝜕𝐮𝐶 and 𝜕𝐩𝐶 should 
exist and be bounded. We introduce the adjoint variable 𝜆 as a Lagrange multiplier that conforms

𝐼(𝐮,𝐩) = 𝐶(𝐮,𝐩) − ∫

𝑡1

𝑡0
𝜆∗(𝑡,𝐮,𝐮′,𝐩)𝑑𝑡, (19)

where 𝜆∗ denotes the conjugate transpose of 𝜆, and  =𝑀𝐮′ −  = 0. The partial derivatives of 𝐶 with respect to 𝐩 can thus be written 
as

𝜕𝐶
𝜕𝐩

= 𝜕𝐼
𝜕𝐩

= ∫

𝑡1

𝑡0

(

𝑔𝐩 + 𝑔𝐮𝐮𝐩
)

𝑑𝑡 − ∫

𝑡1

𝑡0
𝜆∗
(

𝐩 +𝐮𝐮𝐩 +𝐮′𝐮′𝐩
)

𝑑𝑡. (20)

Applying integration by parts leads to
𝜕𝐶
𝜕𝐩

= ∫

𝑡1

𝑡0

(

𝑔𝐩 − 𝜆∗𝐩
)

𝑑𝑡 + ∫

𝑡1

𝑡0
(𝑔𝐮 − 𝜆∗𝐮 + (𝜆∗𝐮′ )′)𝐮𝐩𝑑𝑡 − [𝜆∗𝐮′𝐮𝐩]

𝑡1
𝑡0
. (21)

We require that
𝑔𝐮 − 𝜆∗𝐮 + (𝜆∗𝐮′ )′ = 0, (22)

and

𝜆∗𝐮′ |𝑡=𝑡1 = 0, (23)

and thus the sensitivity equation for 𝜕𝐶∕𝜕𝐩 becomes
𝜕𝐶
𝜕𝐩

= ∫

𝑡1

𝑡0

(

𝑔𝐩 − 𝜆∗𝐩
)

𝑑𝑡 + (𝜆∗𝐮′𝐮𝐩)|𝑡=𝑡0

= ∫

𝑡1

𝑡0

(

𝑔𝐩 + 𝜆∗𝐩
)

𝑑𝑡 + 𝜆∗(𝑡0)𝑀𝐮𝐩.
(24)

Thus we have derived the sensitivity equation along with the adjoint DAE system for 𝜆 and its boundary condition The derivative of 
the solution with respect to a cost function can be obtained by solving the adjoint and sensitivity equations in turn. Note that even if 
𝐶 is discrete, it can be similarly expressed as

𝐶(𝐮,𝐩) = ∫

𝑡1

𝑡0

𝑁𝑑
∑

𝑖
‖𝐝𝑖 − 𝐮(𝑡𝑖, ⋅)‖2𝛿(𝑡𝑖 − 𝑡)𝑑𝑡, (25)

in which case
𝑔𝐮(𝑡𝑖) = 2(𝐝𝑖 − 𝐮(𝑡𝑖, ⋅)), (26)

where 𝐝𝑖 denotes the data point at 𝑡𝑖 [21].
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Fig. 1. Schematic of forward-mode automatic differentiation for a sequence of functions.

3.2.  Automatic differentiation

In 𝜕𝑃 , the solution of the adjoint system is nested within the AD workflow. We consider a computer program in which a numerical 
operation ϝ ∶ 0 → 𝐾 can generally be written as a sequence of compositions, i.e.,

ϝ = ϝ𝐾◦ϝ𝐾−1◦⋯◦ϝ1, (27)

where ϝ𝑘 ∶ 𝑘−1 → 𝑘. The inputs and outputs of functions are 𝐬𝑘−1 ∈ 𝑘−1 and 𝐬𝑘 ∈ 𝑘, respectively. Note that multiple dependencies 
of intermediate functions can be efficiently represented using directed acyclic graphs (DAGs), thus keeping the consistency of the 
above equation. Based on the chain defined in Eq. (27), the full Jacobian matrix can be obtained as

𝜕ϝ(𝐬0) = 𝜕ϝ𝐾 (𝐬𝐾−1)𝜕ϝ𝐾−1(𝐬𝐾−2)⋯ 𝜕ϝ1(𝐬0). (28)

The computational overhead of the above equation is high due to the matrix multiplications of intermediate Jacobians. However, 
in most cases, we need the derivatives of the composition of ϝ and a scalar-valued cost function 𝐶◦ϝ. This translates into solving 
the right or left multiplication of the Jacobian, rather than itself. Forward-mode and reverse-mode ADs are developed on this basis, 
respectively.

Forward-mode AD
The computation of Jacobian can be understood as a composition of primitively known linear maps. The evaluation of 𝜕ϝ(𝐬0) on 

an input vector 𝐰 can be performed by computing Jacobian-vector products (JVPs) along the same direction as the computation of 
intermediate states 𝐬𝑘, hence the name forward-mode AD. This corresponds to the right multiplication of Eq. (28). Such a scheme can 
often be succinctly implemented using dual numbers [57]. Since the computational complexity and memory load of computing 𝜕ϝ𝑘 is 
comparable to the cost of computing ϝ𝑘, the computational cost of a JVP is roughly twice that of ϝ𝑘. The schematic of forward-mode 
AD is presented in Fig. 1, and the detailed solution steps can be found in Algorithm 1.

Algorithm 1 Forward-mode automatic differentiation for a sequence of functions.
Function: ϝ = ϝ𝐾◦ϝ𝐾−1◦⋯◦ϝ1
Input variable: 𝐬0 ∈ 0
Input direction: 𝐰 ∈ 0
Initialize 𝐭0 = 𝐰
for 𝑘 = 1,… , 𝐾 do
 Compute 𝐬𝑘 = ϝ𝑘(𝐬𝑘−1)
 Compute 𝐭𝑘 = 𝜕ϝ𝑘(𝐬𝑘−1)𝐭𝑘−1
end for
Output function value: ϝ(𝐬0) = 𝐬𝐾
Output JVP: 𝜕ϝ(𝐬0)𝐰 = 𝐭𝐾

Reverse-mode AD The gradient of 𝐶◦ϝ takes the form
∇(𝐶◦ϝ)(𝐬0) = 𝜕ϝ(𝐬0)∗∇𝐶(ϝ(𝐬0)), (29)

where the adjoint map is defined as 𝜕ϝ(𝐬0)∗ ∶ 𝐾 → 0, and it yields
𝜕ϝ(𝐬0)∗ = 𝜕ϝ1(𝐬0)∗◦𝜕ϝ2(𝐬1)∗◦⋯◦𝜕ϝ𝐾 (𝐬𝐾−1)∗. (30)

Each intermediate adjoint 𝜕ϝ𝑘(𝐬𝑘−1)∗ is equivalent to a vector-Jacobian product (VJP). Here, VJPs are computed recursively along 
the opposite direction of 𝐬𝑘, hence the name reverse-mode AD. The computational complexity of VJPs, is roughly twice that of the 
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Fig. 2. Schematic of reverse-mode automatic differentiation for a sequence of functions.

Algorithm 2 Reverse-mode automatic differentiation for a sequence of functions.
Function: ϝ = ϝ𝐾◦ϝ𝐾−1◦⋯◦ϝ1
Input variable: 𝐬0 ∈ 0
Output direction: 𝐰 ∈ 𝐾
for 𝑘 = 1,… , 𝐾 do ⊳ Forward pass
 Compute 𝐬𝑘 = ϝ𝑘(𝐬𝑘−1)
end for
Initialize 𝐫𝐾 = 𝐰
for 𝑘 = 1,… , 𝐾 do ⊳ Backward pass
 Compute 𝐫𝑘−1 = 𝜕ϝ𝑘(𝐬𝑘−1)∗𝐫𝑘
end for
Output function value: ϝ(𝐬0) = 𝐬𝐾
Output VJP: 𝜕ϝ(𝐬0)∗𝐰 = 𝐫0

original function. The memory usage grows linearly with respect to the sequence length 𝐾. The schematic of reverse-mode AD is 
presented in Fig. 2, and the detailed solution steps can be found in Algorithm 2.

As discussed in [22], the computational efficiency of forward- and reverse-mode ADs depends on the dimension of 𝑘. Given 
𝑘 ⊆ ℝ𝐷𝑘 , the forward-mode AD is more advantageous in the case of 𝐷𝐾 ≥ 𝐷0, while the reverse-mode is more favorable when 
𝐷𝐾 < 𝐷0. Note that the latter is the more common case when a considerable number of parameters are involved, as is the case in 
neural networks.

Based on the predefined chain rules [58], the adjoint system in Section 3.1 can be automatically invoked when the solution of 
differential equations is encountered during the differentiation process. Therefore, the adjoint and AD systems can be bundled and 
work together as a whole. The current study employs Enzyme, an AD engine that performs code generation at the intermediate 
representation (IR) level of the LLVM. As introduced above, Enzyme generally incurs a memory overhead of two to several times that 
of the original code, owing to the need to store adjoints and cached intermediate values. Enzyme demonstrates runtime superiority 
since it differentiates after LLVM’s optimization passes and thus can produce gradient code that often approaches or exceeds the speed 
of manually written adjoints. It maintains robust compatibility and can interoperate with any code that gets lowered to the LLVM IR. 
For a more detailed description, we refer the interested reader to the original paper [46].

4.  Solution algorithm

4.1.  Machine learning

Machine learning models are parametric representations that map inputs (features) and outputs (targets) without being explicitly 
programmed. Among these, neural networks have emerged as the preeminent architecture within the contemporary landscape of deep 
learning advancements. Taking the feedforward neural network NN𝜽, as an example, it can be viewed as a sequence of parameterized 
functions, i.e.,

𝐬0 ∶= 𝐮,
𝐬1 ∶= 1

(

𝐬0,𝜽1
)

,

𝐬2 ∶= 2
(

𝐬1,𝜽2
)

,

⋮

𝐬𝐾 ∶= 𝐾
(

𝐬𝐾−1,𝜽𝐾
)

,

(31)
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Fig. 3. Flow of the solution and training algorithms for the unified neural-network-augmented model based on differentiable programming.

Fig. 4. Architecture of DeepONet surrogate model of the Boltzmann equation.

where 𝑘 indicates a function layer, and 𝜽 ∶= (𝜽1,… ,𝜽𝐾 ) denotes the parameters to be optimized. As a typical parameterization, the 
multi-layer perceptron (MLP) adopts the fully-connected layers of the form

𝑘 ∶= 𝜙𝑘(𝝎𝑘𝐬𝑘−1 + 𝐛𝑘) (32)

where the affine layer with the weight matrix 𝝎𝑘 and bias vector 𝐛𝑘 and the activation function 𝜙𝑘 are combined to describe a 
nonlinear transformation. The affine layer in Eq. (32) can be replaced by other linear functions, e.g., convolution and filtering, while 
Eq. (31) can be replaced with more general models with more complex structures, e.g., that used in residual and recurrent learning.

Machine learning provides versatile means for describing non-equilibrium flows. Trained on high-fidelity data, parameterized 
models can effectively promote the applicability of constitutive relations, numerical fluxes, source terms, and related components. 
Taking neural networks as an example, based on Eq. (16), a unified neural-network-augmented model can be formulated as

𝜕𝐮
𝜕𝑡

=  (𝑡,𝐮,𝜶,NN𝜽(𝑡,𝐮)),

(𝑡,𝐮,𝜶,𝜽) = 0,
(33)

where NN𝜽 denotes the forward pass of a neural network, 𝐩 = (𝜶,𝜽) signifies the parameters in the mechanical and neural network 
models, respectively. The architecture of Eq. (33) is similar to that of neural ordinary differential equations, and thus offers advantages, 
e.g., memory efficiency and adaptive computation [20]. As a trainable system, it has the same solution methodology as Eq. (16). With 
the introduction of neural networks, the dimensionality of the model’s parameter space increases dramatically, and the ability to depict 
non-equilibrium flows can be subsequently improved. Note that neural networks typically perform inference significantly faster than 
theoretical models of equivalent accuracy, while the training processes can be computationally intensive. A neural network-based 
model can be less generalizable compared to interpretable theoretical models, while high-quality data, careful hyperparameter tuning, 
and incorporation of physical structure can be effective in improving its universality.

4.2.  Solution algorithm

The unified model developed in Eq. (33) requires the solution of both forward and optimization problems. The solution of the 
forward problem follows a similar principle as Eq. (16) in Section 2, where an appropriate integrator implemented with differentiable 
operations is employed to iterate numerical solutions. For the constrained optimization problem, a cost function is needed to align the 
numerical solution towards the referenced data points. A commonly adopted definition of the cost function for supervised learning 
tasks writes

𝐶 =
𝑁𝑐
∑

𝑖

𝑁𝑡
∑

𝑗
‖𝐮ref𝑖 (𝑡𝑗 ) − 𝐮𝑖(𝑡𝑗 )‖2 + 𝜖‖𝜽‖2, (34)
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Fig. 5. Profiles of density, 𝑈 -velocity, temperature, and pressure at 𝑡 = 0.2 simulated by the single-parameter model in the Sod shock tube problem.

Fig. 6. Profiles of density, 𝑈 -velocity, temperature, and pressure at 𝑡 = 0.2 simulated by the multi-parameter model in the Sod shock tube problem.
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Fig. 7. Proportions of contributions of the multi-parameter model in the Sod shock tube problem.

Fig. 8. Profiles of density, 𝑈 -velocity, and temperature at 𝑡 = 0.25 simulated by the initial and optimized models in the wave propagation problem.

which corresponds to the discrete cost function defined in Eq. (25). Here, 𝑁𝑐 represents the number of different flow conditions to be 
simulated and 𝑁𝑡 is the number of time steps. Thus, the trajectories of the numerical solution are tracked upon the total number of 
data samples 𝑁𝑑 = 𝑁𝑐𝑁𝑡. The referenced solution 𝐮ref  can be obtained from fine-grained models with high confidence and fidelity, 
e.g., molecular simulation results. The 𝐿2 regularization term mitigates overfitting and improves model generalization by penalizing 
large weights. The regularization parameter 𝜖 is an empirical parameter that needs to be chosen in a trade-off between bias and 
variance.

The gradient information of the cost function 𝐶 is required to leverage gradient-based optimization methods. Since a considerable 
number of parameters is introduced with neural networks, usually the reverse-mode AD is favored. As discussed in Section 3.2, the 
solution algorithm can be expressed as a sequence of operations, and its derivatives can be computed with the help of sequenced 
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Fig. 9. Profiles of density, 𝑈 -velocity, 𝑉 -velocity, and temperature at 𝑡 = 𝜏0 simulated by different models in the shear layer problem (in the training 
set).

VJPs, which allows for a recursive decomposition of a primitively known set of pullbacks. The predefined adjoints can be incorporated 
into the chain rule to accelerate the gradient computation. After the derivatives of the cost function have been obtained, gradient-
descent-type methods can be employed to optimize the cost function efficiently, e.g. the first-order stochastic gradient descent (SGD) 
method [59], and the second-order Broyden-Fletcher-Goldfarb-Shanno (BFGS) method [60]. The optimized mechanical and neural 
parameters are then used to perform the subsequent forward computation for the unified model, and so on iteratively. The flow of 
the 𝜕𝑃 -based solution algorithm is briefly summarized in Fig. 3. Note that 𝜕𝑃  incurs additional runtime and memory overhead from 
backpropagation of neural networks, but can benefit from hardware acceleration and just-in-time compilation. As the adjoint system 
is bundled into the AD engine, in the absence of neural networks, the computational efficiency of current 𝜕𝑃  is comparable to that 
of classical adjoint methods.

5.  Numerical experiments

In this section, we will conduct numerical experiments to validate the 𝜕𝑃 -based solution algorithm. To illustrate the applicability 
of the methodology to cross-scale flows, cases with different degrees of gas rarefaction are considered. Dimensionless variables are 
uniformly adopted in the numerical simulations, which are defined as

𝑡 = 𝑡
𝐿0∕𝑉0

, �̃� = 𝐱
𝐿0
, �̃� =

𝜌
𝜌0
, �̃� = 𝐕

𝑉0
, �̃� = 𝑇

𝑇0
, �̃� = 𝐸

𝑉 2
0

,

�̃� = 𝐏
𝜌0𝑉 2

0

, �̃� =
𝐪

𝜌0𝑉 3
0

, �̃� =
𝜇

𝜌0𝐿0𝑉0
, �̃� = 𝐯

𝑉0
, 𝑓 =

𝑓
𝜌0∕𝑉 3

0

,
(35)

where 𝜇 denotes the dynamic viscosity coefficient. Physical quantities with a subscript 0 indicate their value in the reference state, 
where 𝑉0 =

√

2𝑘𝑇0∕𝑚 is the most probable molecular speed. The global Knudsen number is defined as

Kn =
𝓁0
𝐿0

=
𝑉0
𝐿0𝜈0

, (36)

where 𝓁0 = 𝑉0∕𝜈0 is the referenced molecular mean free path and 𝜈0 is the mean collision frequency. For brevity, we drop the tilde 
notation to denote dimensionless variables henceforth.
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Fig. 10. Profiles of density, 𝑈 -velocity, 𝑉 -velocity, and temperature at 𝑡 = 5𝜏0 simulated by different models in the shear layer problem (in the 
training set).

5.1.  Optimization of numerical flux

Developing low-dissipation, strongly robust numerical fluxes is an important element of modern CFD. The success of many nu-
merical methods can be attributed to the combination of central and upwind discretizations, e.g., hybrid central-upwind schemes 
[61,62] and gas-kinetic schemes [63,64]. The proportion of upwind and central contributions is usually adjustable to accommodate 
the mechanisms of convection and diffusion in different flows. In addition to relying on a priori assumptions, the proportion can be 
determined by solving the optimization problem using 𝜕𝑃 .

Based on the definition in Eq. (13), here we explicitly write the distribution function at the 𝑘th face as
𝑓𝑓𝑘 = 𝜒𝑓 𝑢𝑘 + (1 − 𝜒)𝑓 𝑐𝑘 , (37)

where 𝑓 𝑢𝑘  and 𝑓 𝑐𝑘 denote the particle distribution functions constructed by the upwind and central approaches, respectively. The two 
distribution functions are unified by the coefficient 𝜒 ∈ [0, 1]. We assume that the cell index to which the normal vector of face points 
is 𝑖 + 1 and the other cell corresponding to it is 𝑖, and the upwind distribution function can constructed according to Eq. (13), i.e.,

𝑓 𝑢𝑘 = 𝑓𝑘𝑖 𝐻(𝐧 ⋅ 𝐯) + 𝑓𝑘𝑖+1(1 −𝐻(𝐧 ⋅ 𝐯)), (38)

where {𝑓𝑘𝑖 , 𝑓𝑘𝑖+1} are the reconstructed distribution functions on both sides of the face, and 𝐻 denotes the Heaviside step function. 
The central contribution can be modeled as a Maxwellian distribution,

𝑓 𝑐𝑘 = 𝑐
𝑘, (39)

which can be determined with the help of the compatibility condition, i.e.,

∫ℝ3
𝑐

𝑘𝜓𝑑𝐯 = ∫𝐧⋅𝐯≥0
𝑓𝑘𝑖 𝜓𝑑𝐯 + ∫𝐧⋅𝐯<0

𝑓𝑘𝑖+1𝜓𝑑𝐯. (40)

Note that incorporating a specific form of the distribution function in Eq. (38) leads to different gas dynamics. Different truncation 
orders of the Chapman-Enskog expansion can yield the Euler, Navier-Stokes, and extended hydrodynamic solutions.

Here, we consider the construction of numerical fluxes for the Euler equations. The particle distribution functions on both sides 
of the face adopt the Maxwellian determined by the reconstructed conservative variables,

𝑓𝑘𝑖 = ̂𝑘
𝑖 , 𝑓𝑘𝑖+1 = ̂𝑘

𝑖+1. (41)
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Fig. 11. Profiles of density, 𝑈 -velocity, 𝑉 -velocity, and temperature at 𝑡 = 10𝜏0 simulated by different models in the shear layer problem (in the 
training set).

Table 2 
Computational setup of the Sod shock tube problem.
 Equation  Gas 𝑡 𝑥 𝑁𝐱  Order  Flux
 Euler  Argon  (0,0.2]  [0,1]  200  1  Central-Upwind
 Integrator  Boundary  CFL 𝑁𝑝  Optimizer
 Euler  Dirichlet  0.5  {1,199}  AdamW

The macroscopic fluxes for conservative variables are thus given by

𝐅𝑊𝑘 = ∫ℝ3
𝐯𝑓𝑓𝑘 𝜓𝑑𝐯. (42)

Since the distribution function 𝑓𝑓𝑘  consists of three Maxwellian distributions, the above integral can be analytically solved. The 
Sod shock tube problem is employed as the numerical experiment. The initial particle distribution function is set as Maxwellian in 
correspondence with the following macroscopic variables,

⎛

⎜

⎜

⎝

𝜌
𝑈
𝑝

⎞

⎟

⎟

⎠𝑡=0,𝑥<0.5

=
⎛

⎜

⎜

⎝

1
0
1

⎞

⎟

⎟

⎠

,
⎛

⎜

⎜

⎝

𝜌
𝑈
𝑝

⎞

⎟

⎟

⎠𝑡=0,𝑥≥0.5

=
⎛

⎜

⎜

⎝

0.125
0
0.1

⎞

⎟

⎟

⎠

. (43)

The system is non-dimensionalized by the tube length together with the initial physical quantities on the left side. The detailed 
computational setup is presented in Table 2, where 𝑁𝑝 indicates the number of trainable parameters.

The flux function is optimized using two approaches. The first approach creates and optimizes a single parameter that controls the 
global behavior of the flux function in Eq. (42). The second strategy constructs a parameter at each face (199 independent parameters 
in total) that provides fine-grained control of local evolution. To bound the predicted proportions of central and upwind contributions, 
the sigmoid function is employed to normalize the trainable parameters, i.e.,

𝜒 = 𝜎(𝐩). (44)

Journal of Computational Physics 539 (2025) 114224 

14 



T. Xiao

Fig. 12. Profiles of density, 𝑈 -velocity, 𝑉 -velocity, and temperature at 𝑡 = 𝜏0 simulated by different models in the shear layer problem (beyond the 
training set using different initial condition).

Table 3 
Proportions of central and upwind fluxes of the single-
parameter model in the Sod shock tube problem.
    Central  Upwind
  before optimization  0.67%  99.33%
  after optimization 97.54% 2.46%

The initial value of 𝐩 is set as 5.0. The cost function is defined as

𝐶 =
𝑁𝑥
∑

𝑖
‖𝐖ref

𝑖 (𝑡 = 0.2) −𝐖𝑖(𝑡 = 0.2)‖2, (45)

where the reference solution 𝐖ref  is obtained from the theoretical solution of the one-dimensional Riemann problem.
Fig. 5 presents the profiles of density, velocity, temperature, and pressure in the shock tube at 𝑡 = 0.2 simulated by the single-

parameter model. Table 3 provide the contribution proportions of central and upwind fluxes before and after optimization. It can be 
seen that as the dominant mechanism shifts from the upwind to the central scheme, the numerical dissipation in the numerical method 
is significantly reduced and the numerical solution is thus closer to the reference. The optimized flux function indicates that less than 
2.5% of the upwind fluxes is sufficient to obtain and maintain robust discontinuous solutions. Fig. 6 presents the numerical results of 
the multi-parameter model. With the increased degrees of freedom due to multiple parameters, localized numerical dissipation can 
be better controlled. As a result, the undershoot and oscillation near the tail of the rarefaction wave are mitigated, while the rest of 
the domain remains highly accurate. Fig. 7 shows the contribution proportions of central and upwind fluxes after optimization in the 
domain. It is clear that the flux function increases the share of upwind contributions near the shock wave, contact discontinuity, and 
front region of the rarefaction wave, thus enhancing the robustness of the numerical scheme in these highly dissipative regions. In 
other regions, the central-dominant flux effectively reduces the numerical dissipation of the scheme, ensuring that accurate physical 
solutions can be obtained.
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Fig. 13. Profiles of density, 𝑈 -velocity, 𝑉 -velocity, and temperature at 𝑡 = 5𝜏0 simulated by different models in the shear layer problem (beyond 
the training set using different initial condition).

5.2.  Identification of fluid property

Obtaining accurate fluid properties is a prerequisite for analysis and prediction. Due to the limited measurement accuracy and 
the sparseness of sensors, physical parameters of gases often need to be obtained indirectly through inversion [65]. Among others, 
viscosity is an important property, which determines the strength of pressure and viscous effects in different flow regimes. In this 
numerical experiment, a calibration problem of determining the viscosity coefficient from flow field data is considered.

Here we employ the hard-sphere model for monatomic gas. The dynamic viscosity coefficient for hard-sphere gas can be deter-
mined as

𝜇 = 𝜇ref

(

𝑇
𝑇ref

)𝜂
, (46)

where 𝜇ref  and 𝑇ref  denote the viscosity and temperature in the reference state, and 𝜂 = 0.5 is the viscosity index. Once the viscosity 
is determined, the mean relaxation time can be obtained from the kinetic theory [66], i.e.,

𝜏 = 1
𝜈
=
𝜇
𝑝
, (47)

which can then be used to solve the BGK model equation.
The wave propagation problem is employed as the numerical experiment. The particle distribution function is initialized as 

Maxwellian, which corresponds to the following macroscopic variables,

⎛

⎜

⎜

⎝

𝜌
𝑈
𝑝

⎞

⎟

⎟

⎠𝑡=0

=
⎛

⎜

⎜

⎝

1 + 0.1 sin(2𝜋𝑥)
1
0.5

⎞

⎟

⎟

⎠

. (48)

The system is non-dimensionalized by the domain length and initial unperturbed quantities. The computational setup is listed in 
Table 4, where Tsit5 refers to Tsitouras’ 5/4 Runge-Kutta method [67]. To bound the prediction, the reference viscosity is set as the 
absolute value of the trainable parameter 𝐩 ∈ ℝ𝑁𝑝=1, i.e.,

𝜇ref = |𝐩|. (49)
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Fig. 14. Profiles of density, 𝑈 -velocity, 𝑉 -velocity, and temperature at 𝑡 = 10𝜏0 simulated by different models in the shear layer problem (beyond 
the training set using different initial condition).

Table 4 
Computational setup of the wave propagation problem.
 Equation  Gas 𝑡 𝑥 𝑁𝑥  Order 𝑣 𝑁𝑣 𝜂
 BGK  Argon  (0,0.25]  [0,1]  100  1 [−5, 5]  48  0.5
 Flux  Quadrature  Integrator  Boundary  CFL 𝑁𝑝  Optimizer
 Upwind  Rectangular  Tsit5  Periodic  0.5  1  LBFGS

Table 5 
Initial, optimized, and target values of dynamic vis-
cosity coefficient in the wave propagation problem.
    Target  Optimized  Initial
  0.01  0.00986  10

The initial value of 𝐩 is 10.0. The cost function is defined as

𝐶 =
𝑁𝑥
∑

𝑖

𝑁𝑣
∑

𝑗

𝑁𝑡
∑

𝑘
|𝑓 ref
𝑖,𝑗 (𝑡𝑘) − 𝑓𝑖,𝑗 (𝑡𝑘)|

2, (50)

where the reference solution 𝑓 ref  is the numerical solution at 𝜇ref = 0.01.
Fig. 8 presents the density, velocity, and temperature profiles at 𝑡 = 0.25 simulated with the initial and optimized parameters. The 

correct viscosity is recovered by aligning the trajectories of the numerical solution and reference target. Table 5 shows the solution 
of the parameter in the optimization problem. It can be seen that the accuracy of the solution is more than 98%. To illustrate the 
superiority of 𝜕𝑃 -based solution algorithm, we compare its performance with standard genetic algorithm (GA, with population size 
150, mutation probability 10−5, crossover probability 0.5) and ensemble Kalman inversion (EKI) [68,69]. The former is a classical 
population-based heuristic optimization technique that evolves encoded candidate solutions via selection, crossover, and mutation. 
The latter leverages the principles of the ensemble Kalman filter within the framework of the Bayesian inverse problem and is one 

Journal of Computational Physics 539 (2025) 114224 

17 



T. Xiao

Fig. 15. Profiles of density, 𝑈 -velocity, 𝑉 -velocity, and temperature at 𝑡 = 𝜏0 simulated by different models in the shear layer problem (with 
fine-tuned model).

Table 6 
Computational costs of the genetic algorithm 
(GA), ensemble Kalman inversion (EKI), and 𝜕𝑃 -
based solution algorithm in the wave propagation 
problem.
    Time (s)  Allocation (GB)
  GA  1096.30  1087.16
  EKI  455.61  434.54
 𝜕𝑃  26.26  10.08

of the state-of-the-art gradient-free methods for solving optimization problems. To accelerate the convergence of the optimization 
problem, we incorporate the prior normal distribution 𝐩 ∼  (0, 0.12) to sample the initial ensemble of parameters. Table 6 provides 
the computational costs until the cost value reduces to 𝐶 = 0.00001 based on 𝜕𝑃 , EKI, and GA, respectively. It can be seen that even 
in the case of strong intervention (by manually presetting parameter distributions closer to the true value), the computational time 
and allocations of EKI are still more than an order of magnitude higher than that of 𝜕𝑃 . This indicates the effectiveness and necessity 
of developing 𝜕𝑃 -based solution algorithms, compared to ensemble-based methods.

5.3.  Construction of hydrodynamic closure

Due to the high dimensionality and strong nonlinearity of the Boltzmann equation, numerous efforts have been devoted to extend-
ing the applicability of hydrodynamic models in non-equilibrium flow regimes. The core task here is to construct reliable algebraic 
or evolutionary models for higher-order moment variables to approximate the particle distribution function, through which Eq. (7) 
becomes solvable. It is challenging since the particle distribution information has been partially filtered out during the coarse-grained 
upscaling modeling processes. Established theoretical work includes the Burnett and Super-Burnett equations based on the asymptotic 
Chapman-Enskog expansion, as well as moment equations based on monomials and polynomials hierarchies. Due to the aforemen-
tioned challenge, these efforts have achieved limited success within specific flow regimes.

Neural networks, as a multi-parameter model, provide an alternative for constructing hydrodynamic closures through a data-
driven approach. Here, we construct a neural network-based constitutive model based on the Navier-Stokes equations that can depict 
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Fig. 16. Profiles of density, 𝑈 -velocity, 𝑉 -velocity, and temperature at 𝑡 = 5𝜏0 simulated by different models in the shear layer problem (with 
fine-tuned model).

non-equilibrium flows more accurately. In the case of monatomic gas, for example, the constitutive relations in the Navier-Stokes 
equations include the generalized Newton’s law and Fourier’s law, i.e.,

𝐏 = −𝑝𝐈 + 𝐓,

𝐓 = 2𝜇(∇𝐱𝐕 + (∇𝐱𝐕)𝑇 ) −
2
3
𝜇(∇𝐱 ⋅ 𝐕)𝐈,

𝐪 = −𝜅∇𝐱𝑇 ,

(51)

where 𝐓 is the stress tensor and 𝐈 refers to the unit tensor. In the computational framework of the finite volume method, the constitutive 
relations are usually incorporated in the flux function for ease of computation, e.g., the flux splitting scheme [70] and gas-kinetic 
flux solver [71]. Thus, we organize the unified model through the flux function, i.e.,

𝐅𝑊 = 𝐅NS + 𝐅NN, (52)

where 𝐅NS denotes the Navier-Stokes fluxes simulated by the gas-kinetic scheme, and 𝐅NN refers to their deviation from ground-
truth non-equilibrium flow physics. The output values of the neural network are equal to 𝐅NN, while its inputs include macroscopic 
variables 𝐖, their gradients ∇𝐱𝐖, and the Knudsen number Kn in the reference state.

The shear layer problem is employed as the numerical experiment. The flow field is initialized as
⎛
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. (53)

The initial particle distribution function is Maxwellian everywhere in correspondence to the macroscopic variables. The system is 
non-dimensionalized by the domain length and physical quantities on the left side. The computational setup is provided in Table 7, 
where 𝜏0 denotes the mean relaxation time in the reference state. A fully connected neural network with 4 layers, 420 parameters, 
and tanh activation functions is employed to build the modified flux function. The cost function is defined as

𝐶 =
𝑁𝑥
∑

𝑖

𝑁𝑡
∑

𝑗
‖𝐖ref

𝑖 (𝑡𝑗 ) −𝐖𝑖(𝑡𝑗 )‖2 + 𝜖‖𝜽‖2, (54)
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Fig. 17. Profiles of density, 𝑈 -velocity, 𝑉 -velocity, and temperature at 𝑡 = 10𝜏0 simulated by different models in the shear layer problem (with 
fine-tuned model).

Table 7 
Computational setup of the shear layer problem.
 Equation  Gas 𝑡 𝑥 𝑁𝑥  Order  Flux
 Extended NS  Argon (0, 10𝜏0] [−0.1, 0.1]  100  1  GKS+NN
 Integrator  Boundary  Kn  CFL 𝑁𝑝 𝜖  Optimizer
 Euler  Dirichlet  0.005  0.5  420 10−5  AdamW

where the reference solution 𝐖ref  is obtained by solving the BGK kinetic equation and applying moments to the distribution function.
Figs. 9–11 present the profiles of macroscopic flow variables at 𝑡 = 𝜏0, 5𝜏0, and 10𝜏0. The pressure-driven transport of momentum 

and energy forms a transition layer that thickens as time evolves. As the results show, due to the lack of effective non-equilibrium 
constitutive relations, the Navier-Stokes equations predict a narrower transition layer along with greater density fluctuations. With 
the supplement of the neural network-based closure model, non-equilibrium effects are well described within the framework of 
hydrodynamic equations, and the rate and pattern of viscous transport, which are identical to those of the BGK equation, are accurately 
recovered.

Due to the black-box nature of neural networks, the generalization capability of the closure model requires further verification. 
We apply the model to a new initial flow field, i.e.,
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, (55)

while keeping all the rest computational parameters unchanged. Figs. 12–14 present the profiles of macroscopic flow variables at 
𝑡 = 𝜏0, 5𝜏0, and 10𝜏0. It can be seen that the current model demonstrates satisfactory extrapolation capabilities and yields phys-
ically reasonable flow fields. While the generalization error induces a solution deviation of up to 6%, its accuracy still signifi-
cantly surpasses that of the Navier-Stokes solutions. An effective approach to enhance the prediction accuracy of the model on 
out-of-distribution data is through fine-tuning. Figs. 15–17 illustrate the numerical experimental results after 100 iterations of fine-
tuning. As evidenced, the limited fine-tunings have further improved the model’s prediction accuracy. Note that the 𝜕𝑃 -based 
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Fig. 18. Particle distribution functions at different time instants (in the training set) simulated by different models in the homogeneous relaxation 
problem (full Boltzmann equation as reference solution).

solution algorithm is inherently suitable for fine-tuning, as it facilitates real-time data supplementation throughout the solution
process.

Table 8 presents the computational costs of a single computation of Navier-Stokes fluxes and neural network inference in the 
𝜕𝑃 -based solution algorithm. It can be seen that the unified model dramatically improves the accuracy of hydrodynamic equations 
while adding only around 25% additional computational overhead.

5.4.  Operator learning for the kinetic equation

Due to the ability of neural networks in feature identification and dimension reduction, an alternative to solving non-equilibrium 
flows is to directly solve the Boltzmann equation with the help of neural networks. Since the complexity of the algorithm for solving 
the Boltzmann equation lies mainly in the fivefold collision integral (larger than 𝑂(𝑁6

𝑣 ) for naive point-to-point computation), we 
construct the surrogate model for this operator based on the neural network. The model employed here is the deep operator network 
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Fig. 19. Particle distribution functions at different time instants (beyond the training set through extrapolation) simulated by different models in 
the homogeneous relaxation problem (full Boltzmann equation as reference solution).

Fig. 20. Particle distribution functions, collision terms, and their differences over the time-velocity domain simulated by the DeepONet and BGK 
models in the homogeneous relaxation problem.

Table 8 
Computational costs of Navier-Stokes fluxes and neural network 
model in the 𝜕𝑃 -based solution algorithm in the shear layer prob-
lem.
    Time (10−4 s)  Allocation (KB)
  Navier-Stokes  1.43  13.36
  Neural Network  0.37  5.20
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Fig. 21. Temporal evolution of macroscopic variables simulated by different models in the homogeneous relaxation problem (full Boltzmann 
equation as reference solution).

(DeepONet) [9], which is a neural architecture designed to learn nonlinear operator mappings between function spaces of infinite 
dimension. The model consists of two subnetworks, i.e., a branch net , which encodes the input functions evaluated at fixed sensor 
points into a finite-dimensional representation in the latent space, and a trunk net  , which encodes the locations at which the output 
function is evaluated. The outputs of these networks are combined, typically via a dot product, to yield the output function’s value 
at the specified location. In this case, the input function to  is set as the particle distribution function evaluated at 𝑁𝑣 collocation 
points in the velocity space, i.e., {𝑓𝑗}𝑗=1∶𝑁𝑣 , and the desired output is the collision term of the Boltzmann equation evaluated at the 
input velocity point 𝐯 ∈ ℝ𝑑 , where 𝑑 is the flow dimension of interest. The architecture of the DeepONet model is shown in Fig. 4. 
The DeepONet-enhanced Boltzmann equation can be written as

𝜕𝑓
𝜕𝑡

+ 𝐯 ⋅ ∇𝐱𝑓 = 1
Kn

NN𝜽(𝑓 ). (56)

5.4.1.  Relaxation of non-equilibrium distribution
We first consider the relaxation of a non-equilibrium distributed many-particle system. The initial particle distribution function is 

set as

𝑓 = 1
2

( 1
𝜋

)3∕2
(exp(−(𝑢 − 1)2) + 0.7 exp(−(𝑢 + 1)2)) exp(−𝑣2) exp(−𝑤2). (57)

We are mainly concerned with non-equilibrium effects in the 𝑥-direction, which can be characterized as

ℎ = ∫

∞

−∞ ∫

∞

−∞
𝑓𝑑𝑣𝑑𝑤. (58)

Based on the DeepONet, we expect to construct a one-dimensional model for the reduced distribution function ℎ that can recover 
correct three-dimensional effects. The computational setup is detailed in Table 9. The DeepONet model employed consists of two fully 
connected neural networks with 4 layers, a total of 51600 parameters, and tanh activation functions. The cost function is defined as

𝐶 =
𝑁𝑣
∑

𝑗

𝑁𝑡
∑

𝑘
|𝑓 ref
𝑗 (𝑡𝑘) − 𝑓𝑗 (𝑡𝑘)|2, (59)

where the reference solution 𝑓 ref  is obtained by solving the Boltzmann equation with the fast spectral method [72,73] and then 
projecting it to one-dimensional space.
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Fig. 22. Particle distribution functions at different time instants (beyond the training set using different initial distribution) simulated by different 
models in the homogeneous relaxation problem (full Boltzmann equation as reference solution).

Table 9 
Computational setup of the relaxation problem.
 Equation  Gas 𝑡 𝐯 𝑁𝑣𝑥 𝑁𝑣𝑦 𝑁𝑣𝑧 Boltzmann  Argon  (0,3] [−5, 5]3  80  28  28
 Quadrature  Integrator  Kn  CFL 𝑁𝑝  Optimizer
 Rectangular  Tsit5  1  0.5  51600  LBFGS
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Fig. 23. Temporal evolution of macroscopic variables (beyond the training set using different initial distribution) simulated by different models in 
the homogeneous relaxation problem (full Boltzmann equation as reference solution).

Fig. 18 presents the solutions of particle distribution function at different time instants in the training set simulated by the 
Boltzmann, BGK, and the current 𝜕𝑃 -based model. It can be seen that the current model outperforms the BGK model in terms 
of accuracy, and it provides a non-equilibrium evolutionary solution equivalent to the Boltzmann equation. Fig. 19 presents the 
extrapolation results from the same initial distribution to extended time durations. It can be seen that the current model demonstrates 
satisfactory extrapolation capabilities and effectively converges toward the equilibrium state. Fig. 20 provides the difference between 
the distribution function and the collision term provided by these two models over the entire time-velocity domain. Clearly, it is the 
difference in the collision terms provided by the BGK equation (i.e., (𝑓 )) and the DeepONet (i.e., (𝑓 )) for the non-equilibrium 
distribution function that leads to the different solutions of the two models. As the intermolecular interactions occur, the distribution 
function gradually approaches the equilibrium state, at which point the results of the two models converge. Fig. 21 illustrates the 
temporal evolution of macroscopic density, momentum, and entropy (defined as ∫ 𝑓 log 𝑓𝑑𝐯). The computational results demonstrate 
compliance with the physical structure of conservation and entropy dissipation (H-theorem) as prescribed by the Boltzmann equation.

Due to the black-box nature of the DeepONet in Eq. (56), its generalization capability is generally limited. We apply the model 
based on Eq. (57) to the relaxation of a new initial distribution function, i.e.,

𝑓 = 1
2

( 1
𝜋

)3∕2
(exp(−(𝑢 − 1)2) + exp(−(𝑢 + 1)2)) exp(−𝑣2) exp(−𝑤2), (60)

while keeping all other computational parameters unchanged. Fig. 22 presents the simulation results at different time instants. It 
can be seen that the generalization error introduces approximately a 5% deviation in the solutions. Fig. 23 provides the temporal 
evolution of macroscopic density, momentum, and entropy. The numerical errors also manifest in the conservation properties of the 
collision term, while concurrently leading to incorrect entropy dissipation rates. Different methods can be employed to enhance the 
generalization performance of the model. A viable solution involves incorporating additional physical constraints. As shown in the 
following equation, the BGK model can be embedded into the data-augmented operator.

𝜕𝑓
𝜕𝑡

+ 𝐯 ⋅ ∇𝐱𝑓 = 1
Kn

NN𝜽(𝑓 ) + 𝜈( − 𝑓 ). (61)

In this case, the DeepONet is sorely required to approximate the discrepancy between the Boltzmann and BGK collision terms, 
thereby better preserving the physical structure in the out-of-distribution scenarios. The numerical experimental results presented 
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Fig. 24. Particle distribution functions at different time instants (beyond the training set using different initial distribution) simulated by different 
models (with physics-augmented DeepONet) in the homogeneous relaxation problem (full Boltzmann equation as reference solution).

in Fig. 24 provide compelling evidence supporting this argument. The excellent performance of the model is also demonstrated 
in terms of conservation properties and entropy dissipation, as illustrated in Fig. 25. The 𝜕𝑃 -based solution algorithm provides a 
convenient platform for seamless model switching. It also accommodates additional methodologies for improving generalization 
capabilities, including transfer learning. For a comprehensive exploration of this topic, we refer the interested reader to Reference
[74].

Table 10 presents the computational costs of a single simulation using the Boltzmann equation, the BGK model, and the 𝜕𝑃 -based 
model. Since the high-dimensional convolution operations in the fast spectral method are replaced by the tensor summations and 
products in the DeepONet, the computational cost is significantly reduced. With the current parameter settings, the computational 
efficiency has improved by more than three orders of magnitude. This numerical experiment verifies the ability of the 𝜕𝑃 -based 
solution algorithm to solve the Boltzmann equation accurately and efficiently.
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Fig. 25. Temporal evolution of macroscopic variables (beyond the training set using different initial distribution) simulated by different models 
(with physics-augmented DeepONet) in the homogeneous relaxation problem (full Boltzmann equation as reference solution).

Table 10 
Computational costs of a single simulation using the Boltz-
mann equation, the BGK equation, and the data-augmented 
unified model in the relaxation problem.
    Time (10−3 s)  Allocation (MB)
  Boltzmann 2.32 × 103 6.35 × 103

  BGK  0.90  1.37
 𝜕𝑃  3.91  47.94

5.4.2.  Normal shock wave structure
We then turn to the normal shock wave structure problem. Based on the reference frame of the shock wave, the initial flow field 

is set as
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, (62)

where the subscripts − and + denote the upstream and downstream states of the shock wave, respectively. The upstream and 
downstream conditions are related through the Rankine-Hugoniot relation, i.e.,

𝜌+
𝜌−

=
(𝛾 + 1)Ma2

(𝛾 − 1)Ma2 + 2
,

𝑈+
𝑈−

=
(𝛾 − 1)Ma2 + 2
(𝛾 + 1)Ma2

,

𝑇+
𝑇−

=

(

(𝛾 − 1)Ma2 + 2
)(

2𝛾Ma2 − 𝛾 + 1
)

(𝛾 + 1)2Ma2
,

(63)
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Fig. 26. Profiles of density, 𝑈 -velocity, and temperature simulated by different models in the normal shock wave structure problem (Shakhov model 
as reference solution).

Table 11 
Computational setup of the normal shock wave structure problem.
 Equation  Gas 𝑡 𝑥 𝑁𝑥  Order 𝑣 𝑁𝑣  Ma
 Boltzmann  Argon  (0,50] [−25, 25]  50  1 [−5, 5]  36  3
 Flux  Quadrature  Integrator  Boundary  CFL 𝑁𝑝  Optimizer
 Upwind  Rectangular  Euler  Dirichlet  0.5  20736  AdamW

where Ma is the upstream Mach number, and the specific heat ratio takes 𝛾 = 5∕3 for a monatomic molecule. The initial particle 
distribution function is set as Maxwellian in correspondence with the above macroscopic variables. The reference state corresponds 
to the upstream conditions, and the system is non-dimensionalized by the upstream molecular mean free path. The computational 
setup is detailed in Table 11. The DeepONet model consists of two fully connected neural networks with 4 layers, a total of 20736 
parameters, and tanh activation functions. The cost function is defined as

𝐶 =
𝑁𝑥
∑

𝑖

𝑁𝑣
∑

𝑗
|𝑓 ref
𝑖,𝑗 (𝑡 = 50) − 𝑓𝑖,𝑗 (𝑡 = 50)|2, (64)

where the reference solution 𝑓 ref  is obtained by solving the Shakhov model equation with the same computational setup, which 
provides more accurate solutions for the evolution of high-temperature gases thanks to the heat flux-based correction.

Fig. 26 presents the distributions of density, velocity, and temperature simulated by the Boltzmann equation, the BGK equation, 
and the current unified model. The current model provides predictions that are equivalent to the reference solution. Fig. 27 details the 
contours of distribution functions and collision terms for both models over the entire space-velocity domain. As is shown, within the 
range of the shock wave (the width is of 𝑂(10𝓁)), the flow variables change dramatically, leading to intensive intermolecular collisions. 
Accurate prediction of collision effects is a prerequisite for capturing the correct shock profile. The difference in the collision terms 
leads to different distribution functions and the corresponding macroscopic variables of the BGK and the current unified models. This 
numerical experiment verifies the ability of the current 𝜕𝑃 -based solution algorithm to solve highly dissipative non-equilibrium flows 
with spatial inhomogeneity.
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Fig. 27. Particle distribution functions, collision terms, and their differences over the space-velocity domain simulated by the unified model and 
BGK equation in the normal shock wave structure problem.

6.  Conclusion

Research on multi-scale and non-equilibrium flows faces challenges arising from high dimensionality and strong nonlinearity in 
theoretical models and solution algorithms. For the first time, this paper systematically addresses the application of differentiable 
programming to the construction of solution algorithms for multi-scale flow physics across continuum and rarefied regimes. The 
distinctiveness of this work resides in its seamless integration of automatic differentiation with adjoint sensitivity analysis. The fully 
differentiable simulator provides a unified framework that seamlessly integrates end-to-end optimization of physical models and 
solution algorithms with forward numerical simulation by computing gradients throughout the backward passes of the simulation 
program. As a result, classical scientific computing and machine learning workflows are organically fused. The paradigm of differ-
entiable simulation lays a solid foundation for building unified flow models, enabling versatile data-driven approaches for physics 
discovery, surrogate modeling, and simulation acceleration. It has great potential to be extended to the study of other complex sys-
tems, e.g., complex-geometry flows [75,76], radiative transfer [77,78], plasma physics [79,80], stochastic simulation [81,82], and 
so on. We aim to further enhance its applicability in massively parallel computing in future work, e.g., constructing MPI-compatible 
automatic differentiation and differentiable programming systems [83].
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